Xuan to look for biofuel of the future using DOE Co-Optima award

March 1, 2017

UNIVERSITY PARK, Pa. — Penn State assistant professor of mechanical engineering Yuan Xuan and researchers at Yale University will work together to identify clean-burning biofuels for next-generation internal combustion engines thanks to a $1.2 million award from the Energy Department’s Co-Optimization of Fuels and Engines Initiative (Co-Optima).

The project is part of Co-Optima’s ground-breaking research in powertrain technology in partnership with universities, industry stakeholders and national laboratories. Co-Optima has two goals: to bring new engines and fuels to market within a decade and to demonstrate new combustion technologies by 2030 with the potential for a 30 percent reduction in petroleum consumption and a 14 percent reduction in greenhouse gas emission nationwide.

“While we expect an increasing number of electric cars in the future, internal combustion engines will continue to dominate the vehicle fleet for the next several decades—as either prime movers or range extenders. Our research is part of a broad effort to make them more efficient and less polluting,” Xuan said. “We are working on just one aspect, sooting behavior of biofuels, of this big problem.”

 Soot is one component of vehicle tailpipe emissions that contributes to smog, poor air quality, respiratory diseases, and other environmental and health impacts. 

 Yale will conduct laboratory research to measure the tendencies of various biofuels — alcohols, esters, ethers, anisoles, and others— to release soot when burned, and Xuan will use computation to model emission indexes of the biofuels, enabling the selection of fuels that minimize soot emissions.

 “There is a huge pool of possible biofuels which can be used for these planned engines. Screening the biofuels is our part,” Xuan said. “I can input thousands of chemical species and their known characteristics into the computer and predict how they would behave. We will determine sooting tendencies for a large number of promising biomass-derived fuels through experiments and computations, then use the results to identify the fuel properties that maximize engine performance while producing low emissions.”

 Xuan joined Penn State in August 2014. His research interests lie in the numerical modeling of flame structures, chemical kinetic studies of soot formation, chemistry-turbulence interactions, and the development of high-performance numerical schemes to simulate complex, large scale turbulent reacting flow problems. He received his B.S. and first M.S. from Ecole Polytechnique, France. He received his second M.S. and Ph.D. in Aeronautics from the California Institute of Technology.

 

Share this story:

facebook linked in twitter email

MEDIA CONTACT:

Chris Hennessey

cjh46@psu.edu

"We will determine sooting tendencies for a large number of promising biomass-derived fuels through experiments and computations, then use the results to identify the fuel properties that maximize engine performance while producing low emissions.”

– Yuan Xuan

 
 

About

The Department of Mechanical and Nuclear Engineering at Penn State is one of the nation’s largest and most successful engineering departments. We serve more than 1,000 undergraduate students and more than 330 graduate students

We offer B.S. degrees in mechanical engineering and nuclear engineering as well as resident (M.S., Ph.D.) and online (M.S., M.Eng.) graduate degrees in nuclear engineering and mechanical engineering. MNE's strength is in offering hands-on experience in highly relevant research areas, such as energy, homeland security, biomedical devices, and transportation systems.

Department of Mechanical and Nuclear Engineering

137 Reber Building

The Pennsylvania State University

University Park, PA 16802-4400

Phone: 814-865-2519