1. [10 pts] Consider the function given below (where \(s = i\omega \)):

\[
T(s) = \frac{s + 5}{10s^4 + 10s^3 + 20s^2 + s + 1}
\]

(1) The amplitude and phase angle (in rad) of \(T(i0.7) \) are

a) \(T = 0.726, \psi = 2.88 \)

b) \(T = 0.726, \psi = -0.264 \)

c) \(T = 1.38, \psi = 2.88 \)

d) \(T = 1.38, \psi = -0.264 \)

(2) The imaginary part of \(T(i0.7) = \text{Re} + i \text{Im} \) is

a) \(- i0.360 \)

b) \(i0.357 \)

c) \(-0.360 \)

d) 0.189

e) \(-0.189 \)
2. [25 pts] A centrifugal pump and its mounting foundation is modeled by a geometrical model shown to the right below. The mass of the rotating part of the pump is \(m \) with its center of gravity, \(e \), offset from the axis of rotation. This unbalance, \(me \), generates a rotating centrifugal force inducing a vertical vibration of the system.

The governing equation of the model is given by

\[
\begin{bmatrix}
 m_1 & 0 \\
 0 & m_2
\end{bmatrix}
\begin{bmatrix}
 \dot{x}_1 \\
 \dot{x}_2
\end{bmatrix}
+
\begin{bmatrix}
 0 & 0 \\
 0 & c_2
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
+
\begin{bmatrix}
 k_1 & -k_1 \\
 -k_1 & k_1 + k_2
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
=
\begin{bmatrix}
 me\omega^2 \cos(\omega t + \alpha) \\
 0
\end{bmatrix}
\]

Let \(m_1 = 350 \) kg, \(m_2 = 800 \) kg, \(me = 0.1 \) kg-m, \(k_1 = 300,000 \) N/m, \(k_2 = 0.5k_1 \), \(c_2 = 25,000 \) N-s/m, \(\omega = 1800 \) rpm and \(\alpha = \pi / 3 \).

(1) The functional expression for the follow-up response of \(x_i(t) \) is given by

a) \(x_i(t) = X_i \sin(\omega t + \psi_i) \)

b) \(x_i(t) = X_i \cos(\omega t + \psi_i) \)

c) \(x_i(t) = X_i e^{i(\omega t + \alpha + \psi_i)} \)

d) \(x_i(t) = X_i \cos(\omega t + \alpha + \psi_i) \)

e) \(x_i(t) = X_i e^{i(\omega t + \psi_i)} \)

(2) Write down the numerical values of the impedance matrix:
The amplitudes of vibrations in meters are

a) \(X_1 = 2.93 \times 10^{-4} \) and \(X_2 = 8.5 \times 10^{-6} \)

b) \(X_1 = 4.27 \times 10^{-4} \) and \(X_2 = 8.5 \times 10^{-6} \)

c) \(X_1 = 2.93 \times 10^{-4} \) and \(X_2 = 3.1 \times 10^{-6} \)

d) \(X_1 = 4.27 \times 10^{-4} \) and \(X_2 = 3.1 \times 10^{-6} \)

The phase shifts (in rad) of the responses from the excitation are

a) \(\psi_1 = 1.57 \) and \(\psi_2 = 1.21 \)

b) \(\psi_1 = -3.14 \) and \(\psi_2 = -1.21 \)

c) \(\psi_1 = 3.14 \) and \(\psi_2 = 0.167 \)

d) \(\psi_1 = -1.57 \) and \(\psi_2 = 2.97 \)

The magnitude of the force transmitted to the soil ground is

a) \(F_{\text{to}} = 14.6 \) N

b) \(F_{\text{to}} = 15.5 \) N

c) \(F_{\text{to}} = 18.7 \) N

d) \(F_{\text{to}} = 22.4 \) N