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average coefficients as defined earlier in Eq. (1) for the
ARMA model of plant dynamics. Since the current plant
output y, is not affected by the current plant input u; in the
dynamic model, the last column of the matrix B is identically
zero. The rationale for keeping this apparently useless column
is to maintain consistency with the notation defined in Eq.
(11). Alternatively, the matrices 4 and B in Eq. (16) can be
found using the observability canonical representation’ in a
procedure similar to that shown in the example. Substituting
Eg. (15) into Eq. (14) yields
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It follows that ¢ must lie in the left null space of D, i.e.,
g™D = 0. Let N denote any matrix with its rows forming a
basis for the left null space of D. Then, g can be expressed as
a linear combination of the rows of N, i.e., g7 = ¢N, where ¢
is a row vector of the coefficients of the linear combination.
Using Eq. (13) and assuming that f( -, -) is linear, the follow-
ing filter structure is obtained from Eg. (11) as

IS Yy s (k)
Uer = Lo “[‘u,(k)} ”’N[‘u,w(kJ

(18)
Since all of the elements of Y, (k) and U,(k) are also con-
tained in Y, . (k) and U, . (k) respectively, the right-hand
side of Eq. (18) can be expressed solely in terms of Y, ., (k)
and U,, (k). To this effect we introduce the row vectors o
and 8 as

a=[00---0u]such that Y, . (k) =aY, (k)
B=1[00- - -0 6] such that BU, . » (k) = U, (k)

Substituting o and 8 in Eq. (18), the filtered estimate can be
expressed as

(ym(m]

Zk+x=([rx6]+¢‘N)i:(u *)

(19)

The next step in the construction of the filter is the selection
of ¢ to satisfy the requirement [Eq. (12)] in an optimal man-
ner. This is done by finding an optimal ¢, denoted as ¢°, that
minimizes the mean square error E{(2x(@) — yx)*]. Also, it is
necessary to show that the least mean square error satisfies the
constraint imposed by Eq. (12). It is only necessary to find one
o that satisfies Eq. (12) to show that ¢° satisfies Eq. (12)
I zcause the least mean square error (due to ¢°) is smaller or
equal to the mean square error from any other choice of ¢.
One possible choice of ¢ that will satisfy Eq. (12) is the one
with all of the coefficients equal to zero; this choice yields
() = 7, by comparing Egs. (18) and (2), and the equality
will hold in Eq. (12).

The mean square error is minimized using an expression
similar to Eq. (8),

Eilzk@lw.ykvlizl =FE

%here WTW = R is the covariance matrix (which is positive
e*inite) of the vector containing the A terms in Eq. (20). The
“tnt-hand side of Eq. (20) is minimized with respect to & by
M.nimizing the & norm of W([a B8] + ¢N)7. This is done by

-

(e B) + &N Y i (K)TU, 4 (K)T)

= 1W[(la B] + 6N) Yy o n(k)TU, o o (K)TIT13

solving the overconstrained problem W([a 8] + oN)" =0 in
the least squares sense to obtain

(697 = = [(WNTYT(WNT)-Y(WN) Wi 8]

= — [NRNT]"'NR{a BT (€3}
The final form of the moving average filter is obtained by
substituting Eq. (21) into Eq. (19)
(yn+/n(k)
ke = - RNTINRNT]"'N
ko1 = {[a B] - [« B) [ ] )[‘UH,,,(k)

Yo ,,,(kq

U, . (k) 22

= [« B)(/ - RNT[NRNT]~ 'N){

Remark 2: If the covariance matrix R is set equal to the
identity, then the idempotent matrix P = (/ — NT[NNT]=IN),
i.e., P=PTand P = P?, is recognized to be the orthogonal
projection operator®® onto the column space of the matrix D.
This corresponds to ordinary least squares. If R is not the
identity matrix, then the projection is orthogonal to the
column space of the matrix W7D, This corresponds to the
weighted least squares.® It follows that filtering is achieved by
canceling all inconsistencies in the sensor outputs relative to
the column space of W7D, .

Remark 3: As expected, filtering is performed before pre-
diction in Eq. (22). The data, obtained from the history of
control inputs and sensor outputs, is filtered by using the
weighted projection operator, and then the prediction is ob-
tained by multiplication by [« 8] to obtain z;, . A slight
modification of Eq. (22) that yields the filtered estimate, i.e.,
Zxw, instead of the predicted estimate, z4 . {1, [ollows.

a'={00...001}andB" =[00..

are set to obtain

.000}

k
Lo = [ B~ RNT[NRNT}"N){%*"’E[\,H (23)

Similarly, for zy.,, i.e., first-order smoothing, o’ =10
0...010)and 83" =[00...000] are set to obtain
ryll + f"(k)
ok =[a" B1(J = RNTINRNT] !N 24
k- =la’ B ( ] )[‘u”,,,(k)] (24)
In this way, for higher order smoothing, it is only necessary to
set the corresponding term in o’ to 1.

Remark 4: 1t follows from Eq. (20) that & cannot be used
to directly diminish the effect of the multiplicative error
(Ynem(K)T AT + U, ., n(k)TAbT). Furthermore, for a particu-
lar filter realization Aa and Ab may assume constant values,
and the multiplicative error can be substantial. Some instances
may arise where the length of the filter will worsen the multi-
plicative error. For example, if Aa =0, Ab is a nonzero con-
stant vector, and w(k) = u = const, then the multiplicative
error (r + m)uAb is directly proportional to the length of the

AY, . m(k) :
AU, . (k)

AaT

AbT

(20

filter and an infinite-dimensional filter will diverge. However,
it is possible to indirectly diminish the effect of the multiplica-
tive errors by increasing the actuator noise covariance, i.e., by
emphasizing the sensor data over the plant model.
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The estimation error is obtained by manipulating Eqs. (1-6)

BYis 1 =Frer = Ve

_ [av,m Y, (k)
'*JﬂAqu*w“A”[qu ®

The mean square error is then expressed as the second moment
of the estimation error

AY, k)] |?
aU, k)
aa’
Ab7

E1Apei1?) = E{ | [o8Y,(0)U(K)) ®)

If R = WTW is the covariance matrix of the vector containing
the A terms, then Eq. (8) becomes

E {18y 12) = 1Wla 8 Y, (k)T U (k)T 712 9)

where |- I, is the standard §, norm.®
Remark 1: If there is no modeling error, i.e., both Aag and
Ab are identically zero, then Eq. (9) becomes
E[Ayy 1) = 02(aa”) + 02 (887) 10)
because the actuator noise and sensor noise have been as-
sumed to be white sequences with variances ¢? and o, respec-
tively. Thus, the root mean square error of the prediction is
the & norm of the vector [6,a 0,8]. *

Filtered Estimate

It is seen from Eq. (7) that the error Ay, ., in the unfiltered
estimate can be interpreted as a weighted sum of the error
terms in Egs. (3-6). Intuitively, if the weighting terms in
Eq. (7) are selected correctly and the summation is performed
over a longer history of errors it may be possible 1o average
out some of the random fluctuations due 1o the errors. This
motivates the following modification of the unfiltered esti-
mate in Eq. (2) 10 obtain the filiered estimate:

Yn (k)

‘u,(/\—J + S Yn s m(k), WU,y (K)) (1

lpel = [u B][
where f{Y, . m(k), U, . »(k)] is a (scalar) function of the most
recent history of (n + m) sensor outputs and (r + m) control
inputs to the plant.

Since all of the elements of ‘Y,(k) and U,(k) are also
contained in Y, . (k) and U, ., ,(k), respectively, the right-
hand side of Eq. (11) is solely as a function of ,. (k) and
U, . (k). Therefore, f(-,-)in Eq. (11) represents the differ-
ence between the filtered estimate and the unfiltered estimate,
i-e-‘flfyn+m(k)’ (urom(k)] =s j’kw— )

A mean square criterion is enforced to ensure that the
filtered estimate z; is indeed an improvement over the unfil-
tered estimate y;.

Ellzy = e )= E[13y =y 13 (12)
Also, in the absence of actuator noise and sensor noise, i.e., if
Y. (k) = Y,(k), U, (k) = U,(k), we must have g, = J, for ev-
ery k. Therefore, by comparing Egs. (11) and (2), this require-
ment reduces to

JWaemk), Urim(k)) =0 (13)

By restricting the choice of the filter structure to linear map-
pings, f(-,-) can be represented as a function of a
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1 X (r+n+2m) weight, and Eq. (13) is consequently ex.
pressed as

nQAm]=O

Ur+m(k)

The (n + r + 2m) X 1 matrix g can be identified by using the
available information provided by the ARMA model (1) of
plant dynamics based on the assumption of perfect model,
i.e., Aa =0 in Eq. (3) and Ab = 0 in Eq. (4). This is accom-
plished by expressing the plant outputs in terms of the initial
state

SYnim(k), Ur+m(k)]=qr[ (14)

nw-mq
Uk +m)

(15)

Urem(k) =AY, (k =m)+BU,. (k) = [4 B][

where the matrices A and B are to be constructed in terms of
the elements of the model parameter matrices a and b. A
procedure to find 4 and B is illustrated by the followiny
example.
Example: Letn =2,r =1, and m = 2. Then,
Yie1= A Yg + 02y + by
Yev2=a@ Yk + @Yk -1 + biug) + aoye + biti 4y

These equations are expressed in matrix notation as

Vi1 1 0 0 00 y

w|_|o 1 l:yk_,:l+ 0 00 uk*l
Y+ a a, Yk b 00 Uk:*
Yi+2 aya; aya, + a; ab b 0 :

Using the same notation as in Eq. (15) and replacing £ by
(k — 2) yields

Ya(k) = AYy(k — 2) + BU;(k)

The procedure given in the example can be generalized to
include arbitrary values of m, n, and r as follows:

A,,.,,j-x Onx(r+m)
Apsjoa bTO---00
A,,,,j=a A"+j-3 N H = ObT -+ 00
A; 00---570
Hnéj-l
Hn+j—2
Bn+j=a Hn+j—3 (]6)
H,
where
]nxn 0nx(r+m)
An+1 Bn-r—l
A= An+2 ’ B = Bn+2
Apam Bysm
andj=1,2,...,m,and A4;, B;, and H;denote the ith row of

A, B, and H, respectively; a is a 1 X n matrix of the autore-
gressive coefficients, and & is a 1 X r matrix of the moving
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average coefficients as defined earlier in Eg. (1) for the
ARMA model of plant dynamics. Since the current plant
output y, is not affected by the current plant input u, in the
dynamic model, the last column of the matrix B is identically
zero. The rationale for keeping this apparently useless column
is to maintain consistency with the notation defined in Eq.
(11). Alternatively, the matrices A and B in Eq. (16) can be
found using the observability canonical representation’ in a
procedure similar to that shown in the example. Substituting
Eg. (15) into Eq. (14) yields

el ] o[ o

[

It follows that ¢ must lic in the left null space of D, i.e.,
g™D = 0. Let N denote any matrix with its rows forming a
basis for the left null space of D. Then, g can be expressed as
a linear combination of the rows of N, i.e., g7 = N, where ¢
is a row vector of the coefficients of the linear combination.
Using Eq. (13) and assuming that f( -, -) is linear, the follow-
ing filter structure is obtained from Egq. (11) as

- Y, (k) Yoo m(k)
L =la E][‘u,(k)} * "ﬁNl:‘U”m(k)}

(18)
Since all of the elements of Y,(k) and U,(k) are also con-
tained in Y, . (k) and U, , ,(k), respectively, the right-hand
side of Eq. (18) can be expressed solely in terms of Ypom(k)
and U,, (k). To this effect we introduce the row vectors «
and # as

a=[00- -0 ] such that aYn, m(k) = a¥,(k)

B=[00- - -0 6] such that BU, . »(k) = U, (k)

Substituting o and 8 in Eq. (18), the filtered estimate can be
expressed as
m(k

21 = (o B]+¢N){?L’::mikﬂ (19
The next step in the construction of the filter is the selection
of & to satisfy the requirement [Eq. (12)] in an optimal man-
ner. This is done by finding an optimal ¢, denoted as ¢°, that
minimizes the mean square error E[(zx(¢) — ¥x)*). Also, it is
necessary to show that the least mean square error satisfies the
constraint imposed by Eq. (12). It is only necessary to find one
« that satisfies Eq. (12) to show that ¢° satisfies Eq. (12)
| acause the least mean square error (due to ¢°) is smaller or
equal to the mean square error from any other choice of &.
One possible choice of ¢ that will satisfy Eq. (12) is the one
with all of the coefficients equal to zero; this choice yields
2.(®) = 7 by comparing Eqgs. (18) and (2), and the equality
will hold in Eq. (12).

The mean square error is minimized using an expression
similar to Eq. (8),

E‘lzkd-l_ykw»ll‘z}:E

where WTW = R is the covariance matrix (which is positive
{e*inite) of the vector containing the A terms in Eq. (20). The
%t nt-hand side of Eq. (20) is minimized with respect to ¢ by
".aimizing the & norm of W([a B] + ®N)7. This is done by

-

e

[(la B] + &N Yo (K) U o m(K)T)

= I1W (e B) + &N Y o (k)T U, o (K)T)T N3

solving the overconstrained problem W([a 8] + &N =0 in
the least squares sense to obtain

(697 = = [(WNTT(WND) - (WNT)TW(a BT

= —[NRNT]-'NR[a B)7 (21
The final form of the moving average filter is obtained by
substituting Eq. (21) into Eqg. (19)
(yﬂ*l"(k)
kel = - RNTINRNT]"'N
ko1 = (la Bl = laB] [NRNT] ){‘u,”,(k)}

ymmk)}

U, v m(K) ¢

= [a BN/ - RN’[NRNT}"N){

Remark 2: 1f the covariance matrix R is set equal to the
identity, then the idempotent matrix P = (/ — NT[NNT]"!N),
ie., P=PTand P = P2, is recognized to be the orthogonal
projection operator®® onto the column space of the matrix D.
This corresponds to ordinary least squares. If R is not the
identity matrix, then the projection is orthogonal to the
column space of the matrix WTD. This corresponds to the
weighted least squares.® 1t follows that filtering is achieved by
canceling all inconsistencies in the sensor outputs relative to
the column space of W7D, *

Remark 3: As expected, filtering is performed before pre-
diction in Eq. (22). The data, obtained from the history of
control inputs and sensor outputs, is filtered by using the
weighted projection operator, and then the prediction is ob-
tained by multiplication by [« 8] to obtain z4 . . A slight
modification of Eq. (22) that yields the filtered estimate, i.e.,
Zew, instead of the predicted estimate, 24 . ik follows.

a'=[00...001]and B3’ =[00...000]

are set to obtain

n+m k
e = la” BT~ RNT[NRNTI“N){?l Ek;] (23)

Similarly, for zx_,w, i.e., first-order smoothing, a’ = [0
0...010)and 3" =[00...00 0] are set to obtain

Yy o )]
- — ’ ’ — T Ty-1
evw = la’ BN — RNTINRNT] N)[MM,,,(k)} (24)

In this way, for higher order smoothing, it is only necessary to
set the corresponding term in o’ to 1.

Remark 4: 1t follows from Eq. (20) that ¢ cannot be used
to directly diminish the effect of the multiplicative error
[Ynemk)AaT + U, , (k)TAbT]. Furthermore, for a particu-
lar filter realization Ag and Ab may assume constant values,
and the multiplicative error can be substantial. Some instances
may arise where the length of the filter will worsen the multi-
plicative error. For example, if Aa =0, &b is a nonzero con-
stant vector, and u(k)= u = const, then the multiplicative
error (r + m)uAb is directly proportional to the length of the

AYn . mik) :
AU, m(k)
AaT
AbT

(20)

filter and an infinite-dimensional filter will diverge. However,
it is possible to indirectly diminish the effect of the multiplica-
tive errors by increasing the actuator noise covariance, i.e., by
emphasizing the sensor data over the plant model.
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The performance of the filier can be expressed as the ratio multibody systems in space. When a spacecraft is considered as 2~ §'
of the weighted & norm of the filter coefficients as shown next serial rigid-body system without closed-loop topology, a new and
in decibels for the case of no modeling errors (i.e., Aa = 0 and efficient algorithm, an order-n formulation,! can be applied for the g} Bod (
Ab = 0), and identically distributed independent sensor noise dynamic analysis. This formulation requires only an order of n R}, .y
with variance ¢} and identically distributed independent actua- arithmetic operations, where 7 is the number of degrees of freedom m::;;:‘
tor noise with variance o] . of the system. This Note adapts Rosenthal’s algorithm? for the fol. inert:
R 2wy 2 amanT lowing situations: 1) a system 1is frcc_in space, 2) a system has Iy
10 log El(z —ye) ]] =101 gl:d.- (¢"a"")+0,(B"B"T) 25) tree topology, and 3) intermittent motion occurs. In spacecrafi dy. Ly
E[Gy -y o (aa”) + 02 (88T) namics, intermittent motion plays an important role in deployment, si {c
docking, mass capture, and mass release. This behavior is formu. il
where @” and 8 are of the same dimensions as « and § and lated using the impulse-momentum equations,® which are solveq
are given by recursively by using the order-n formulation. A numerical example
" om . _ demonstrates the validity of the present method. A center arm angd
[a” B7) = la B] (I = RNTINRNT]'N) (26) two panels of a spacecraft model are connected by revolute hinges
Conclusions and are deployed due to the force of a shrunk spring: Wher_l the ‘
. i hinge movement is locked by a ratchet mechanism, intermittent (
A finite memory filter is presented for real-time applica- motion oceurs. o
tions, such as smart sensors and/or active sensors, where E It
memory constraints are tight and computationally efficient Model Description 8 )
algorithms are required for implementation on a microchip . ) 3
collocated with the sensor. It is assumed that an ARMA model anprp ! Sh(.)ws .the deplqymem sequence of the model that h_"s 2
o . i . four rigid bodies, i.e., a main body, a center arm, and two panuis, @
of the plant dynamics is available. The key concept is the X . . >
: N : The main body is considered the base body By, and both the cenier >
construction of a nonrecursive filter based on weighted aver- . . X T
. o . arm and the panels are labeled as B; (i = 1, 2, 3). The main body is o
aging of a finite array of past values of the measured inputs : - C ’ 2
. : free in space. The revolute hinges are labeled as H; (i=1,2,3),and § £
and outputs of the plant. Although the filter algorithm has . . - g C
been derived for SISO systems, it can be extended, in princi- the hinge apglc 15 mcasurcq as shown in Fig. 1. . .
, bed b -0
ple, to MIMO systems. Qcomcmca] conﬁgu.rauon of5 tree 1op910gy is descri y
! using the body connection array” L(k), which represents the labe]
References of the adjoining lower numbered body of body B,. In this model, 0
Jazwinski, A. H., Stochastic Processes and Filiering Theory, Aca- the body connection array is defined as
demic Press, New York, 1970, Chap. 7. »
2Morrison, N., Introduction to Sequential Smoothing and Predic- L(1) =0, L)y=L3)=1 m a) Veloc'
tion, McGraw-Hill, New York, 1969, Chaps. 2, 12.
3Giordano, A. A., and Hsu, F. M., Least Square Estimation with The deployment process is illustrated in Figs. la-lc. Initially, ( '
z:;pp(icilgigsns c;ﬁ Dig3ital Signal Processing, Wiley Interscience, New two panels are folded and attached to the center arm (g, = g3 =90 § @ .
ork, , Chap. 3. . . _ B
4Haykin, S., f%daplive Filter Theory, Prentice-Hall, Englewood deg), and then t.he center arm 15 folded onto the main bc?dy (g, =90 g
Cliffs, NJ, 1986, Chaps. 3, 4. deg) as shown in Fig. la. At7 =0 s, the center arm begins 10 rotate 2 g
SHaritos, G. K., and Srinivasan, A. V., eds., Smart Structures and ‘—:J
Materials, ASME Pub., AD-Vol. 24 and AMD-Vol. 123, Dec. 1991. o -0
6Luenberger, D. G., Optimization by Vector Space Methods, Wi- §
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