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Stochastic Modeling of Fatigue Crack Dynamics
for On-Line Failure Prognostics
Asok Ray and Sekhar Tangirala

Abstract— This paper presents a nonlinear stochastic model
of fatigue crack dynamics for real-time computation of the
time-dependent damage rate and accumulation in mechanical
structures. The model configuration allows construction of a filter
for estimation of the current damage state and prediction of
the remaining service life based on the underlying principle of
extended Kalman filtering instead of solving the Kolmogorov
forward equation. This approach is suitable for on-line damage
sensing, failure prognosis, life prediction, reliability analysis,
decision-making for condition-based maintenance and opera-
tion planning, and life extending control in complex dynamical
systems. The model results have been verified by comparison
with experimentally generated statistical data of time-dependent
fatigue cracks in specimens made of 2024-T3 aluminum alloy.

1. INTRODUCTION

N the post cold war era, under the pressure of global

economic competition, increased emphasis is being put on
maintenance and life extension of existing plant equipment for
continuous-time and discrete processes in an effort to reduce
major capital costs and increase productivity. The economic
and technological challenges for reliable and cost effective
operation and maintenance are met through a combination
of damage monitoring, failure prognostics, and remaining
service life prediction. Examples are mechanical systems (e.g.,
rail transport, automotive, and aircraft), power systems (e.g.,
fossil-fueled power plants), and continuous-time production
processes (e.g., chemical and petrochemical plants, and pulp
and paper mills) where structural durability and operational
reliability are critical. Analogous problems exist in discrete
production processes, e.g., manufacture of ceramics, semi-
conductors, and food products. Although off-line analysis
permits assessment of structural durability and service life
in the design stage, the current technology does not offer
appropriate tools for on-line monitoring of structural damage,
failure prognosis, and remaining life as continuous functions of
time [1] that are needed for maintenance scheduling and plant
operations planning. The major challenge here is to identify
both static and dynamic properties of material degradation and
then characterize this information in a mathematical form for
on-line decision and control systems.
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This paper focuses on monitoring fatigue damage in metallic
materials which are commonly encountered in mechanical,
power and chemical plants. The analytical results are based on
fatigue tests that have been conducted under normal ambient
conditions. The objective here is to obtain a clear under-
standing of the random phenomena in fatigue and fracture
and to establish a framework for on-line damage monitoring
in the continuous-time setting. It should be noted, however,
that the physics of fatigue damage at room temperature in
laboratory air is, in most cases, significantly different from
that at the elevated temperatures of a plant environment.
Nevertheless, the research work presented in this paper is a
crucial step toward achieving the final goal of implementing
damage monitoring systems that will be functional in the actual
environments of plant operations.

The fatigue damage can be characterized at the microscale,
mesoscale and macroscale levels [2]. Considerable information
is already available in the literature pertaining to the damage
mechanisms and states prevalent in different metallic materials
and alloys of interest [3]. In general, damage criteria are
defined in terms of metallurgical (microstructural) features
and parameters, such as inclusions, pores, dislocations, and
lattice deformation or crystallographic texture; or physical
discontinuities, such as cracks, interfaces and cavities. A focus
on the former approach attempts to equate the condition of
a specific microstructural feature, or a combination of these
features, to a particular damage state, often irrespective of the
generation of observable discontinuities. The latter approach,
which correlates the initiation and growth of cracks to the
state of damage, is adopted in this paper. In this setting,
the structural integrity and the associated -service life of a
plant componznt are computed as continuous-time functions of
degradation in mechanical properties that are directly related to
the changes in the microstructural or physical features being
monitored.

Two major difficulties arise in the correlation of quantitative
measures of specific features or material conditions to the
damage state. First, the rates of damage accumulation may
vary as time progresses even under isothermal and constant
amplitude cyclic loading; the situation is far more complex
under transient thermomechanical conditions. Drastic changes
in the sensor signal characteristics may occur at different
stages as the process of damage accumulation continues.
Therefore, more than one approach to the basic mechanism
of fatigue crack measurements is necessary over the entire
range starting from crack incubation to the final stage of
crack propagation. Second, many of the characterization or
inspection techniques that offer good potential for real-time,
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in-situ applications provide cumulative effects of damage that
are highly dependent on knowledge of the material properties
as well as on the initial state, i.e., prior to exposure to
the damaging environment or service loads. These issues
are subjects of current research and, therefore, are not fully
addressed in this paper.

In view of its application to mechanical, power, chemical,
and manufacturing industries, the potential benefits of the
research work reported in this paper are envisioned as follows:

* Enhanced safety, reliability, and availability due to timely
prediction of impending failures.

* Reduction of the life cycle cost by optimization of the
plant operation and maintenance schedule.

* Enhancement of the plant performance and structural
durability to achieve the operational objectives.

From the above perspectives, this paper complements the
efforts of other investigators on 1) development and implemen-
tation of software systems for creep and fatigue life assessment
[4] and 2) construction of new sensing elements and sensor
hardware such as strain gauges that can be operated at elevated
temperatures [5].

II. MODELING OF FATIGUE CRACK DYNAMICS

Modeling of fatigue damage has been a topic of intensive
research for several decades. Many researchers cited in [6]
have proposed empirical and semi-empirical models based on
observed experimental data and attempted to provide a physi-
cal interpretation to these models. Modeling of fatigue damage
dynamics via nonlinear stochastic differential equations is a
relatively new area of research, and an extensive list of the
literature representing the state of the art is cited by Sobczyk
and Spencer [7]. One approach is to randomize an established
deterministic model of fatigue damage dynamics to generate
the necessary stochastic information.

A. Deterministic Damage Modeling of Fatigue Crack Growth

The deterministic fatigue crack growth model is based on
the concept of the short crack growth model [8] and [9]. While
the Paris model [10] is valid in the macro-crack range, the
Newman model represents the fatigue crack growth process
down to microcracks in the order of 10 m. The Newman model
for crack growth is of the form
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where p is the mean crack length, N is the number of
cycles, the crack growth rate dy/dN is the so-called derivative
of p with respect to N as commonly used in the fracture

mechanics literature [11], so is the crack opening stress, F' is
the correction factor for finite width of the specimen, and Sy,
is the maximum applied remote stress; and C;, i =1, -+, 5
are material parameters. As an alternative to the functional
form of (1), a look-up table form can determine dy/dN in
terms of AK.s¢. In this setting, the crack growth rate is
expressed as

j—]/'\bf =exp [mln(AK.¢s) + b];
where m is the slope and b is the intercept of the linear
interpolation of the (log scale) AK.ss—du/dN look-up table.
Details of this method are reported by Newman et al. [9]. It
should be noted, however, that any other deterministic model
of fatigue crack growth can be used with the only criterion
being that the observed experimental crack growth profile
is accurately represented. For example, several researchers
[12]-[14] have used a cubic polynomial fit in In (AK,fy) to
determine crack growth rate. Following [15], the crack growth
equation is expressed in the continuous-time setting as

8%\ [dsS
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where (1) or (2) is represented as du/dN = ®(u, S, S,). A
common practice is to define the time-dependent fatigue crack
damage as the ratio of the mean crack length and the critical
value of the crack length which is a function of the material,
component geometry, and the operating condition [16].

1(No) = po >0 (2)

B. Stochastic Damage Modeling of Fatigue Crack Growth

It has been shown by several researchers, including Bolotin
[16] and Spencer and Tang [12] and [13], that the process of
fatigue crack growth can be modeled by nonlinear stochastic
differential equations satisfying the Itd conditions [17]. The
information generated from these models can be used to
formulate algorithms for damage prediction and risk analysis.
Specifically, Kolmogorov forward and backward diffusion
equations, which require solutions of nonlinear partial differen-
tial equations, have been proposed by several researchers, cited
in [7], to generate the statistical information required for risk
analysis of aircraft structures. These nonlinear partial differen-
tial equations can only be solved numerically; the numerical
procedures, however, are extremely computationally intensive
as they rely on a fine-mesh model using finite-element or
combined finite-difference and finite-element methods [14].
Therefore, although this approach might be useful for making
off-line maintenance decisions, it is not sufficiently fast for
on-line damage monitoring, failure prognosis, and remaining
service life prediction. To enhance the numerical efficiency,
we propose to adopt the underlying principle of extended
Kalman filtering [18] in which the first two moments of the
stochastic damage state are computed on-line by constructing
the stochastic differential equations in the Wiener form as
opposed to the Itd form. This can be achieved following
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the two-state model of Spencer and Tang [12] provided that
the shaping filter is constructed with additive white Gaussian
noise. The underlying principle of extended Kalman filtering
can be used with or without any sensor(s). The absence of
any useful sensor data is equivalent to having the inverse of
the intensity of measurement noise covariance tend to zero;
in that case, the filter gain approaches zero. Consequently, the
conditional density function generated by the filter becomes
identical to the prior density function whose evolution is
governed by the Kolmogorov forward equation [18].

The stochastic differential equation for the crack growth
process c(w, t) is expressed in terms of the deterministic
damage dynamics as

de(w, t) o2(t)] dp
— =P {z(w, t)— 5 } — Vi>t,
given
Ele(w, to)] = to
and
cov[e(w, to)] =P, 4)

where w and t represent the sample point and time of the
stochastic process, respectively. The auxiliary process z(w, 1)
is assumed to be stationary Gauss—Markov of variance o2(t)
implying that the crack growth rate is a lognormal-distributed
Markov process. The rationale for this assumption is as fol-
lows: 1) fatigue crack growth rates in many metallic materials
are observed from experimental data to be approximately
lognormal-distributed and highly correlated over a short period
of time [7] and 2) the crack propagation phenomenon has
been modeled as a Markov process by including history-
dependent crack opening stresses or reference stresses [15]
as an additional input. Yang and Manning [19] recommended
the lognormal distribution model of fatigue crack propagation
statistics in aluminum alloys for scheduling of aircraft mainte-
nance because 1) this approach is moderately conservative; 2)
it is mathematically tractable and can be easily implemented;
3) a small number of replicate fatigue tests are adequate to
calibrate the model; and 4) reasonable crack growth predic-
tions for structural details have been obtained previously from
this model.

It follows from (4) that Eldc(w, t)/dt] = dp/dt due to
the Gaussian distribution of z(w, t). This is in agreement
with the governing equation of mean crack growth in (3).
The correlated stationary Gauss—Markov process z(w, t) is
modeled by using a first-order linear shaping filter which is
driven by the additive zero-mean white Gaussian noise w(w, t)
of intensity @, as

df%?ﬁ =~¢z(w, t) +wlw, t) Vi>t,
given
E[z(w, to)] =20
and
cov [z(w, t,)] = g—g— 5)

where the filter parameter ¢ is a measure of “coloredness”
of the auxiliary random process z(w, t). As & is increased,

z(w, t) becomes more uncorrelated. Specifically, if & is set
equal to zero, then z(w,t) becomes a Brownian motion
process which is perfectly correlated. In the extreme case,
as ¢ tends to infinity, 2(w, t) approaches zero implying no
uncertainties in the fatigue crack growth process. Experimental
data show that z(w, ¢) remains highly correlated over a long
period and eventually may become uncorrelated [20]. This
phenomenon is realized if 0 < § < 1.

The constant parameter z, in (5) is determined from the
environmental condition under which the fatigue crack growth
takes place. Specifically, z, is set to zero at the nominal
environmental condition (e.g., laboratory air at room temper-
ature) under which experiments are conducted to determine
the fatigue damage parameters in (3). In a more hostile
environment (e.g., humid and salty air at the ocean surface),
however, the increased damage rate can be realized by setting
2o to a positive value. Similarly, in a more benign environment
(e.g., dry air), z, should be set to a negative value to realize
the relatively slower growth of fatigue cracks.

The stochastic differential equations (4) and (5) are now
combined to yield the augmented stochastic vector x =
[c z]T as a vector diffusion Markov process with additive
noise, which can be interpreted in the Wiener sense instead
of the Itd6 sense. Then, linearization of the augmented state
equation yields the local state transition matrix which would
lead to computation of the first two moments of x(w, t) condi-
tioned on the history of the stress and the mean and variance of
x(w, t,). This provides full statistical characterization of the
crack length at each instant of time based on the assumption
of the lognormal distribution which is described by the first
two moments.

The measurements, generated from any available sensor(s)
(e.g., strain gages and acoustic emission transducers) at the
instant ¢, is modeled as an algebraic function of the damage
state vector x and additive sensor noise v

y(w, t) =g [X(wv t)] + U(w’ t) (6)

where the deterministic function g(e) represents the sensor
model; and v(w, t) is zero-mean white noise of known in-
tensity representing measurement noise. Since v(w, t) is a
consequence of electronic and acoustic noise, it is assumed
to be independent of the material uncertainties w(w, t), i.e.,
Elw(w,t) v(w, )] = 0 Vt, 7 > t,. Conditional mean
and variance of the crack length c(w, t) can be obtained in
real time via (4)—(6).

III. FAILURE PROGNOSIS, RISK ANALYSIS,
AND DECISION-MAKING FOR MAINTENANCE

Failure prognosis and risk analysis are envisioned to be
an augmentation of failure diagnosis to predict and locate
impending failures of critical plant components. Traditionally,
the risk index and residual service life [16] of mechanical
structures and machine components are calculated off-line on
the basis of statistical models of the mechanical properties
of the material, operating conditions, major disruptions (e.g.,
emergency shutdown of the plant from full load), and accidents
(e.g., seismic and large atmospheric disturbances). The service
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life of a plant component is finite as the damage accumulation
is monotone with time. On-line monitoring of the accumulated
damage allows refinements of the risk index and residual ser-
vice life prediction [16], [21] as time progresses. Specifically,
prediction of the accumulated damage and the current damage
rate will assist the plant engineer in making dynamic decisions
regarding safety procedures, mission accomplishments, and the
time interval between major maintenance actions. The concept
of life prediction based on the current plant and damage states
is outlined below.

We define M hypotheses as disjoint regions of normalized
crack length, i.e., ¢/c*, where ¢* is the critical crack length
beyond which the crack growth rate becomes very large rapidly
leading to complete rupture. Therefore if the initial crack
length is ¢,, then the first (M — 1) hypotheses become

(o e E22)

M-1
(c* = ¢o) (c* —¢o)
(C°+ Mo1 etP o
(C*_CO) *
..’<Co+(M—2)m, C:|. (7)

The last (i.e., Mth) hypothesis is chosen as the region {¢*, oc)
which is popularly known as the unstable crack region in the
fracture mechanics literature [11]. Each of these M hypotheses
represents a distinct range in the entire space of normalized
crack lengths from an initial value of ¢, till the rupture
occurs, and together, they form an exhaustive set of mutually
exclusive regions in the damage state space. The probability
that the jth hypothesis, H;, holds at any given instant of time,
t, is computed via the instantaneous probability distribution
function (PDF) F,(et) of the crack length c(t)

P Gy
P = Fu [eo+3 s

) (" —c)
— c|:CO+<]—1)W,t
j=1,2 -, M-1
Py(t) =1— F.(c*; ). (8)

If the crack length is assumed to be lognormal-distributed [7],
then the instantaneous PDF, F.(e; t), of the stochastic process
¢(w,t) can be determined from the first two moments of crack
Iength that are generated as continuous functions of time by the
extended Kalman filter. Therefore, the probability that a given
hypothesis is valid can be computed on- line as a function
of time. Using the PDF, F,, we can compute the remaining
service life 7'[¢; Yy(t); ] at any specified time instant, ¢, based
on a desired plant output profile Yy(¢) = {y(7) : 7 > t} and
a confidence level e. This implies that if the plant operation
is scheduled to yield the desired output, then T'[t; Yy(t); €] is
the maximum time of operation such that the probability that
the crack length c(w, ¢+ T') does not exceed c* is greater than
. This is mathematically represented as

Tt; Yy(t); ] = sup {7 € [0, 00) : Plew, (t +7) < c*] > ¢}
)
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Fig. 1.

This is accomplished by using the same extended Kalman filter
formulation described above. Given the expected value and
variance of crack length at time ¢, the extended Kalman filter
can be simulated using these values (as initial conditions) and
the desired load/output profile to find the maximum remaining
time of operation 7', such that Plc(w,t + T') < ¢*] > e.

The above procedure can be used to provide valuable
information to the higher level of decision making or a
human operator about the confidence with which the plant
operations can be planned for a specified amount of time. This
information is also of considerable importance to maintenance
scheduling or in making decisions on how to reschedule the
plant operations to avoid an untimely shutdown.

IV. MODEL VERIFICATION AND RESULTS

We present, in this section, an example of how to tune and
verify the stochastic damage model with statistical data of
fatigue tests. In this example we used the data of Virkler ez
al. [22] in which the tests were conducted in an environment
of dry air under a constant load amplitude of 4200 Ib with a
peak load of 5250 Ib. Each test specimen was made of center-
cracked 2024-T3 aluminum alloy panels 22 in long, 6 in wide,
and 0.10 in thick as shown in Fig. 1. A stress raiser of half
length 0.05 in was machined in the center of the specimen.
The tests were conducted on 68 specimens under very tight
quality control to ensure that each test was identical including
environmental conditions. Fig. 2 shows that, even under these
tight conditions and constant amplitude loading, the fatigue
life of the specimens had a large variance. It should be noted,
however, that the data in Fig. 2 correspond to macrocracks.
Statistical data of short cracks [9] need to be collected for
complete validation of the crack growth model.

Variations in the fatigue crack growth profile of the appar-
ently identical specimens are due to the uncertainties inherent
in the crack growth process and material characterization.
The parameters of the damage model in (3) were identified
based on experiments conducted in laboratory air. On the
other hand, the Virkler data which are used in this paper
for model validation were generated in the more benign
environment of dry air. Therefore, to compensate for this
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Fig. 2. Statistical data of fatigue crack growth.

change in environmental condition, the parameter z, in (5) was
tuned to —0.471. That is, (3) is corrected by a multiplicative
factor of exp (—0.471) = 0.6244.

Fig. 3 compares the mean crack length profile generated
from the test data with the expected value derived from the
extended Kalman filter. The deterministic fatigue crack growth
model used in the extended Kalman filter formulation uses a
table lookup to compute the crack growth rate as a function
of AK,.;¢ following the procedure outlined by Newman et al.
[9]. Fig. 4 compares the profile of the standard deviation of
crack length generated from the experimental data with that
derived from the model. The model resuits are in very close
agreement with the experimental data for the first two moments
of the crack length. as seen in Figs. 3 and 4. The rapid rise in
the standard deviation after 11500 s (i.e., 230000 cycles) in
Fig. 4 is due to the fact that unstable crack growth begins here
and the specimen is about to break. These results of damage
model validation have been generated with no sensor data.
That is, the inverse of the intensity of the measurement noise
v in (6) has been taken to be zero.

The results in Figs. 3 and 4 are comparable with those
reported by Spencer and Tang [12], [13] and Enneking [14]
who numerically solved the Kolmogorov diffusion to obtain
the statistics of crack length. The solution of the partial
differential of Kolmogorov is computationally two orders of
magnitude more expensive than that of the ordinary differen-
tial encountered in the extended Kalman filter (EKF) which
required less than 2 s of CPU time on a Pentium-90 computer
for the entire period of 12500 s, i.e., 250000 cycles. It should
be noted that the Kolmogorov yield the conditional density as a
function of time while the extended Kalman filter formulation
yields a time series of only the first two moments of the crack
length. The CPU time requirement is virtually unchanged,
however, if the two parameters of the lognormal distribution
are also computed based on the first two moments provided by
the Kalman filter. Since Kalman filtering provides a recursive
solution, the memory requirements are also significantly lower.
This fact coupled with the accuracy of the results make the
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Fig. 3. First moment of crack length.
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Fig. 4. Standard deviation of crack length.

proposed method ideally suited to real-time sensing of fatigue
damage.

As mentioned in the previous section, the instantaneous
PDF of the crack length c¢(w,t) is determined from the first
two moments of crack length assuming that the distribution of
crack length is lognormal. Based on these statistics of ¢(w, ),
the conditional probability of any one of the (M) mutually
exclusive and exhaustive hypotheses is computed as a function
of time. To elucidate the concept of hypothesis testing for
remaining life prediction, the damage state space is partitioned
into M segments starting from the initial crack length c,.
Probabilities of the M hypotheses having the random crack
length c(w,t) at a given time ¢ located in one and only
one of these segments is computed on-line. Given that c,
= 9.0 mm with probability 1 and the critical crack length
¢* = 49.8 mm, the 11 hypotheses (M = 11) are depicted in
Table 1. The time evolution of probability of the hypotheses
for the simulation of the Virkler experiment described above
is shown in Fig. 5 where each successive hypothesis starts at
time ¢ = O s on the left and ends at time 12500 s (i.e., 250000
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TABLE 1
DAMAGE PREDICTION IN THE PROBABILISTIC SETTING

Description Range
Hypothesis Hi 9.00 mm <c(t) <13.08 mm
Hypothesis Hp 13.08 mm <c(t)< 17.16 mm
Hypothesis H10 45.72 mm <c(t) <49.80 mm
Hypothesis Hj 49.80 mm <c(t) (Unstable Crack Growth)
2 1.0
£
g 08
3
I}
| 06
2
=
g 04
2
3 02
£
= 00
0.0 2.5 5.0 7.5 10.0 125
Time (Seconds) x10
Fig. 5. Probabilities of the individual hypotheses as functions of time.

cycles) on the right. The plot of Hy begins with a probability
close to one and later diminishes as the crack grows with
time (i.e., number of cycles). The probability of each of the
remaining hypotheses Ho—H g is initially close to zero and
then increases to a maximum and subsequently decreases as
the crack growth process progresses with time. The probability
of the last hypothesis H1; (on the extreme right in Fig. 5) of
unstable crack growth beyond the critical crack length initially
remains at zero and increases rapidly only when the specimen
is close to rupture. At this stage, the probability of each of
the remaining hypotheses, Ho—Hg, diminishes. The plots in
Fig. 5 also show the effects of the increasing variance of crack
length on the probability of a hypothesis. The higher variance
of crack length after about 7500 s (i.e., 150000 cycles), as
seen in Fig. 4, is manifested in the spreading of the probability
over several hypotheses. This information can be used in a
higher level decision making module (possibly a discrete-
event supervisor [23]) to make decisions of failure prognosis,
life extending control, and condition-based maintenance, or
generate warnings and alerts.

In its current form, the deterministic damage model is valid
only for constant amplitude loads. Additionally, the stochastic
damage model is tuned for a particular constant amplitude
load and due to the lack of experimental data; the parameter
¢ for stress amplitudes other than that used in the Virkler
experiment could not be determined. These restrictions do not
allow the computation of the remaining life following (9) for
arbitrary load profiles. Since the deterministic damage model
is valid for constant amplitude loads, it can be used to predict
fatigue crack growth accurately for step changes in the load
amplitude, i.e., a change in the load applied to the structure
from an amplitude of 5250 1b to say 5500 Ib from one cycle to
another. This does not effect the accuracy of the deterministic
damage model since the structure can be assumed to be freshly
loaded with the previous value of crack length as an initial

45 . y T T
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E
E 30t
2
S 25
k=]
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Number of Cycles x103

Fig. 6. Expected value of crack length.

condition. Preliminary work reported by Tang and Spencer
[13] has shown that the parameter £ is dependent on the
maximum stress applied to the structure; it was conjectured
that a constant value of ¢ can be used for small changes in
the stress ratio of the loading applied to the structure without
causing large errors. Experimental data at different load levels
must be available for testing this conjecture.

Figs. 6 and 7 show the profiles of expected value and stan-
dard deviation of crack length, respectively, for the original
loading of the Virkler experiment along with two additional
load profiles which are constructed by changing the stress ratio
(i.e., the ratio of minimum applied stress to the maximum
applied stress) after 50000, 100000, 150000, and 200000
load cycles. The effects of changing the stress ratio, R, for
a given peak stress were investigated. A smaller R causes
a higher stress amplitude and hence a larger crack growth
rate (due to increased AK.sr) even though the mean stress
1s decreased. Similarly, a larger R results in a smaller crack
growth rate due to a reduced stress amplitude. The sequence
effect of fatigue crack growth [6] is clearly evident whereby
the fatigue damage accumulation is dependent on the order in
which different stress amplitudes are applied to the structure.
It is interesting to note that the amount of fatigue damage
accumulation during the test period of 250000 cycles is less
in both cases of variable amplitude loading than that for the
original constant amplitude case. This also results in a lower
standard deviation of the crack length.

Fig. 8 shows the probability of two hypotheses, Hs and Hg,
out of the eleven hypotheses defined above as functions of time
for the Virkler and two additional load profiles. Fig. 9 shows
the effects of changing the stress ratio on the remaining life
under three different scenarios. The first scenario, represented
by the dashed line, predicts the remaining life when the stress
ratio R in the anticipated load profile is held constant at
0.2 until 200000 cycles are applied and then changed to
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Fig. 7. Standard deviation of crack length under varying amplitude loading
under varying amplitude loading.

0.5 for the remaining 50000 cycles up to the final stage
at 250000 cycles. This is a straight line of slope —1 since
the remaining life prediction is based on the anticipated load
profile which is identical to the actual load applied to the
specimen for the entire period of 250000 cycles. The second
scenario represented by the dash-dot line is identical to that
for the dashed line up to 100000 cycles and then differs in the
following sense. After 100000 cycles, the anticipated stress
ratio R in the scenario of the dash-dot line is changed to 0.5
at 150000 load cycles and held constant until 250000 load
cycles have elapsed. This causes the remaining life prediction
to show a step increase at 100000 cycles due to the lower
applied stress for part of the entire load sequence. This change
is actually implemented at 150 000 cycles and hence the dash-
dot line remains at a constant slope after the initial step change
at 100000 cycles. The third scenario, represented by the solid
line, is generated by anticipating, at the instant of 100000
cycles, the same change in value of R to take place at 150 000
cycles but, unlike the second scenario (i.e., the dash-dot line),
this anticipated change does not actually happen. Since the
fatigue damage rate is higher due to the larger stress amplitude
of the applied load, the predicted remaining life starts ramping
down at 150 000 cycles and ending at 200 000 cycles when the
stress level is known. The solid line merges with the dashed
line at 200000 cycles since, from that moment onward, the
applied load and anticipated load are identical for the two
scenarios.

V. SUMMARY, CONCLUSIONS, AND
RECOMMENDATIONS FOR FUTURE RESEARCH

The stochastic model of fatigue damage dynamics presented
in this paper is suitable for on-line damage sensing, failure
prognosis, life prediction, risk analysis, decision-making for
condition-based maintenance and operation planning, and life

1 : :
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g 0.8 ) ; 1 R=0.2 constant |
g L ¥ .1 R=0.2,04,00,
2 ' . < 04,00
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Number of Cycles x10°
Fig. 8. Probabilities of hypotheses Ho and Hg under varying amplitude
loading.

Remaining Life (cycles x 105)

0 05 1 15 2
Elapsed Life (cycles x 105)

2.5

Fig. 9. Predicted remaining life of a specimen under varying amplitude
loading under varying amplitude loading.

extending control in complex dynamical systems. Potential
application areas are mechanical systems (e.g., rail transport,
automotive, and aircraft), power systems (e.g., fossil-fueled
power plants), contnuous-time production processes (€.8.,
chemical and petrochemical plants, and pulp and paper mills),
and discrete production processes (e.g., manufacture of ce-
ramics, semiconductors, and food products) where structural
durability of plant components and operational reliability are
critical. The dynamic model of fatigue crack growth model is
built upon the following concepts:
+ The deterministic part of the model follows the short
crack growth model [8], [9]. Any other fatigue damage
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model such as [15], however, can also be adopted as long
as the predicted values of mean crack length are within
the allowable limits of accuracy.

* The stochastic part of the model is based on the underly-
ing principle of extended Kalman filtering in the Wiener
integral setting as opposed to the Kolmogorov diffusion
equation in the Itd integral setting.

The numerical procedure for the stochastic part is computa-
tionally much faster than that based on Kolmogorov equations
{7] and yields results of comparable accuracy that have been
validated with experimental data of fatigue crack growth
statistics. The time-dependent distribution of the random crack
growth process was generated from the first two moments
obtained the extended Kalman filter based on the assumption
of lognormal distributed crack length; this information suffices
to determine, at a given level of statistical confidence, the time-
dependent remaining service life of mechanical structures that
are subjected to cyclic loads. Any distribution that fits the crack
length statistics and depends only on the first two moments
of crack length can be used for this purpose. If this is not
possible, however, further research is needed to generate a
fast algorithm for identification of the probability distribution
function of crack growth based on the time series of the first
two moments and physical characterization of the crack growth
phenomenon.

The research work reported in this paper is a crucial step
toward achieving the final goal of implementing damage
monitoring systems in the actual environments of plant op-
erations. Potential benefits of this damage monitoring concept
are envisioned as follows:

» Enhanced safety, reliability, and availability due to timely
prediction of impending failures.

* Enhancement of the plant performance and structural
durability to achieve the operational objectives.

* Reduction of the life cycle cost by optimization of the
plant operation and maintenance schedule.

Further research is recommended in the following areas

from the above perspectives:

e Development of basic sensing elements for real-time non-
destructive measurements of fatigue cracks at different
stages of crack initiation and propagation. It is highly
unlikely that a specific type of sensing element will be
uniformly accurate over the entire span of the service life.
Therefore, different techniques of crack damage sensing
such as strain measurements [24] and acoustic emission
[25] need to be developed.

» Verification of the fatigue crack growth model at different
levels of stress amplitude including overload effects under
varying amplitude stresses. This requires collection of
statistical test data for fatigue growth at different stress
levels, starting from different initial crack lengths as well
as for different materials.

* Correlation of the stochastic parameters of the fatigue
growth model. This may lead to a classification of
the model parameters as material-dependent and stress-
dependent. The research work in this area should be
directed in two parallel and mutually complementary

directions: 1) metallurgical (microstructural) features and
parameters, such as inclusions, pores, dislocations, and
lattice deformation or crystallographic texture; and 2)
physical discontinuities, such as cracks, interfaces and
cavities.

» Extension of the fatigue crack growth model for operation
at elevated temperatures and actual plant operating envi-
ronment. This research is necessary because the physics
of fatigue damage at room temperature in laboratory air
is, in most cases, significantly different from that at the
elevated temperatures of a plant environment.
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