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Abstract

This paper presents an algorithm for robust optimal control of regular languages under specified uncertainty bounds on the event cost
parameters of the language measure that has been recently reported in literature. The performance index for the proposed robust optimal
policy is obtained by combining the measure of the supervised plant language with uncertainty. The performance of a controller is
represented by the language measure of the supervised plant and is minimized over the given range of event cost uncertainties. Synthesis
of the robust optimal supervisory control policy requires at mostn iterations, wheren is the number of states of the deterministic finite-
state automaton (DFSA) model, generated from the regular language of the unsupervised plant behavior. The computational complexity
of the control synthesis method is polynomial inn.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper addresses the problem of robust supervisory
control of regular languages, representing deterministic
finite-state automata (DFSA) models of the physical plants
under decision and control. Specifically, algorithms are
formulated for both robust analysis and optimal robust su-
pervisor synthesis for regular languages, or equivalently,
for their DFSA models. Also, mathematical foundations of
these algorithms are rigorously established.
Recent results on the analysis of DFSA and on the syn-

thesis of optimal supervisory control policies motivate the
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work presented in this paper. More precisely, a novel way
of accessing the performance of DFSA has been proposed
in Wang and Ray (2004)andRay and Phoha (2003), where
a signed real measure of regular languages has been devel-
oped. This measure is computed using an event cost matrix
and a characteristic vector and it provides a quantitative tool
for evaluating the performance of regular languages, rep-
resenting discrete-event dynamic behavior of DFSA plant
models. This work was followed byFu, Ray, and Lagoa
(2004) where, based on this performance measure, an al-
gorithm is developed for the design of optimal supervisors.
The optimal controller is obtained by selectively disabling
controllable events in order to maximize the overall perfor-
mance. However, uncertainty was not addressed. This paper
considers structural uncertainty in the DFSA model: (i)
uncertainty in the presence of some of the state transitions
and (ii) uncertainty in the entries of the event cost matrix
(and hence the state transition matrix) used to compute the
performance of the system. The first source of uncertainty
results from inaccuracies in modelling of the discrete-event
dynamic behavior of the plant under supervision. The second
source of uncertainty is inherent to the process of parameter
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identification of the event cost matrix. Since the entries of
the event cost matrix can be often determined using a scaled
version of the probabilities obtained by Monte Carlo sim-
ulations, their values are only known as bounded intervals
with a specified level of statistical confidence. The robust
supervisory control algorithm, presented in this paper, has a
complexity that is polynomial in the number of states of the
DFSA model.

1.1. Previous work

The problem of robust control of discrete-event dynamical
systems (DEDS) has been addressed by several researchers.
Park and Lim (2002)have studied the problem of robust
control of nondeterministic DEDS. The performance mea-
sure used was nonblocking property of the supervised plant.
Necessary and sufficient conditions for existence of a ro-
bust nonblocking controller for a given finite set of plants
are provided. However, no algorithm for controller design
is provided. The problem of designing nonblocking robust
controllers was also addressed byCury and Krogh (1999)
with the additional constraint that the infinite behavior be-
longs to a given set of allowable behaviors. In this work,
the authors concentrated on the problem of designing a con-
troller that maximizes the set of plants for which their su-
pervised behavior belong to the admissible set of behaviors.
Takai (1999)addresses a similar problem. However, it con-
siders the whole behavior (not just the infinite behavior) and
it does not consider nonblockingness.Lin (1993)adopted a
different approach, where both the set of admissible plants
and the performance are defined in terms of the marked
language. Taking the set of admissible plants as the plants
whose marked language is in between two given behaviors,
the authors provided conditions for solvability of the prob-
lem of designing a discrete event supervisory controller such
that the supervised behavior of any of the admissible plants
contains a desired behaviorK.
To address a subject related to that of this paper several

researchers have proposed optimal control algorithms for
DFSA based on different assumptions. Some of these re-
searchers have attempted to quantify the controller perfor-
mance using different types of cost assigned to the individual
events.Passino andAntsaklis (1989)proposed path costs as-
sociated with state transitions and hence optimal control of
a discrete event system is equivalent to following the short-
est path on the graph representing the uncontrolled system.
Kumar and Garg (1995)introduced the concept of payoff
and control costs that are incurred only once regardless of
the number of times the system visits the state associated
with the cost. Consequently, the resulting cost is not a func-
tion of the dynamic behavior of the plant.Brave and Hey-
man (1993)introduced the concept of optimal attractors in
discrete-event control.Sengupta and Lafortune (1998)used
control cost in addition to the path cost in optimization of the
performance index for trade-off between finding the shortest
path and reducing the control cost.

A limitation of the work mentioned above is that the con-
trollers are designed so that the closed loop system has cer-
tain specified characteristics. No performance measure is
given that can compare the performance of different con-
trollers. To address this issue,Wang and Ray (2004)and
Ray and Phoha (2003)have proposed a signed real mea-
sure for regular languages. This novel tool of addressing the
performance of DFSAs enables the developing of a new ap-
proach to supervisor design. The design of optimal supervi-
sor has been reported byFu, Ray, and Lagoa (2003)andFu
et al. (2004)for without and with event disabling cost, re-
spectively. This paper extends the previous work on optimal
control by including robustness in the problem of designing
supervisors in the presence of uncertainty.

2. Brief review of the language measure

This section briefly reviews the concept of signed real
measure of regular languages introduced inWang and Ray
(2004). Let the plant behavior be modelled as a DFSAGi ≡
(Q,�, �, qi, Qm) whereQ is the finite set of states with
|Q| = n excluding the dump state (Ramadge & Wonham,
1987) if any, andqi ∈ Q is the initial state;� is the (finite)
alphabet of events;�∗ is the set of all finite-length strings
of events including the empty string�; the (possibly partial)
function � : Q × � → Q represents state transitions and

�̂∗ : Q × �∗ → Q is an extension of�; andQm ⊆ Q

is the set of marked states. The setQm is partitioned into
Q+m andQ−m, whereQ+m contains allgoodmarked states
that are desired to terminate on andQ−m contains allbad
marked states that are not desired to terminate on, although it
may not always be possible to avoid terminating on the bad
states while attempting to reach the good states. The marked
language associated with DFSAGi Lm(Gi) is partitioned
intoL+m(Gi) andL−m(Gi) consisting of good and bad strings
that, starting fromqi , terminate onQ+m andQ−m, respectively.
The language of all strings that starts at a stateqi ∈ Q

and terminates on a stateqj ∈ Q, is denoted asL(qi, qj ).

That is,L(qi, qj ) ≡ {s ∈ L(Gi) : �̂∗(qi, s) = qj }. Further-
more, consider a characteristic function� : Q → [−1, 1]
satisfying

�(qj ) ∈
{

(0,1] if qj ∈ Q+m,

{0} if qj /∈Qm,

[−1,0) if qj ∈ Q−m.

Now, the event cost̃� : �∗ ×Q→ [0,1] is defined as

• �̃[�k|qj ] = 0 if �(qj ,�k) is undefined;̃�[�|qj ] = 1;
• �̃[�k|qj ] ≡ �̃jk ∈ [0,1); ∑

k�̃jk <1;
• �̃[�k s|qj ] = �̃[�k|qj ]�̃[s|�(qj ,�k)].
Given this, the signed real measure� of a singleton string
set{s} ⊂ L(qi, qj ) ⊆ L(Gi) ∈ 2�∗ is defined as

�({s}) ≡ �(qj ) �̃(s|qi) ∀s ∈ L(qi, qj ).
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The signed real measure ofL(qi, qj ) is defined as

�(L(qi, qj )) ≡
∑

s∈L(qi ,qj )

�({s})

and the signed real measure of a DFSAGi , initialized at the
stateqi ∈ Q, is denoted as

�i ≡ �(L(Gi))=
∑
j

�(L(qi, qj )).

Taking� ≡ [�1 �2 · · ·�n]T, it was proven inWang and Ray
(2004)that

�=��+X,

where� is ann× n matrix whose(i, j) entry is

�jk ≡ �(qk|qj )=
∑

�∈�:�(qj ,�)=qk

�̃(�|qj )

and

�jk = 0 if {� ∈ � : �(qj ,�)= qk} = ∅
andX ≡ [�1 �2 · · · �n]T. So that the vector� is well defined,
it is assumed that there exist a	>0 such that, for alli∑
j

�ij �(1− 	).

Remark 1. It should be noted that if one defines the function
(or operator)T : Rn→ Rn

T (x) ≡ �x +X,

finding the language measure� is equivalent to finding the
fixed point ofT. This observation plays an important role in
the proofs of the results in this paper.

3. Modelling uncertainty

This section introduces the model of uncertainty of a
DFSA along with the concept of robust performance. Un-
certainty in the event cost matrix and in the existence of
state transitions are the types of uncertainty studied in this
paper. Other types of uncertainties (e.g., those due to the
number of states and controllability of the events) that are
not addressed here are topics of future work.

3.1. Uncertainty

As mentioned above, two types of uncertainties are con-
sidered in the model used in this paper: Uncertainty in the
presence of state transitions and uncertainty in the event cost
matrix. These two sources of uncertainty can be modelled
by modifying the definition of the measure used to compute

the performance. More precisely, define theuncertain event
costas

�̃
[�j |qi] = (�̃0[�j |qi] + 
cost [�j |qi])
model[�j |qi],
where �̃0[�j |qi] is the event cost of the nominal model,

cost [�j |qi] represents the uncertainty associated with the
determination of the event cost and belongs to an interval that
is a proper subset of[0,1]. Finally,
model[�j |qi] represents
uncertainty in the existence of this specific transition of the
automaton, i.e., if this transition is always present then


model[�j |qi] = 1.

If there is uncertainty in the presence of this transition, then


model[�j |qi] ∈ {0,1}.
Furthermore, it is assumed that the uncertain event costs vary
independently, i.e., each uncertain parameter only enters in
one event cost. Finally, it is also assumed that there exists a
constant	>0 such that for all admissible uncertainty values
and all i∑
j

∑
�∈�:�(qi ,�)=qj

�̃
[�|qi]�1− 	.

The set of admissible values for the uncertainty
 is denoted
by � and is a compact subset of[0,1]|�|×n × {0,1}|�|×n.
Now, given any
 ∈ �, the uncertain state transition matrix
is given by

�(
)=




�11(
) �12(
) . . . �1n(
)

�21(
) �22(
) . . . �2n(
)
...

...
. . .

...

�n1(
) �n2(
) . . . �nn(
)


 ,

where

�ij (
)=
∑

�∈�:�(qi ,�)=qj

�̃
[�|qi].

3.2. Additional notation

Given a supervisorS, let �(S,
) be the uncertain state
transitionmatrix under supervisorS, i.e.,�(S,
) has entries

�ij (S,
)=
∑

�∈�:�(qi ,�)=qj

�̃S,
[�|qi],

where

�̃S,
[�|qi]
=

{
0 if � controllable and disabled byS,

�̃
[�|qi] otherwise.

For a given admissible value for the uncertainty
, the per-
formance of the plant under the supervisorS, denoted by
�(S,
), is the solution of

�(S,
)=�(S,
)�(S,
)+X.
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4. Robust performance

In this section, a precise definition of robust performance
is provided and an algorithm for computing is presented.

4.1. Definition of robust performance

Consider an uncertain automaton controlled by a supervi-
sorS. The robust performance of supervisor S, denoted by
�(S), is defined as the worst-case performance, i.e.,

�(S)=min

∈�

�(S,
),

where the above minimum is taken elementwise. Even
though the minimization is done element by element, this
performance is achieved for some
∗ ∈ �. The precise
statement of this result is given below and its proof is
provided in Section 5.2.

Lemma 2. Let S be a supervisor. Then, there exists a
∗ ∈
� such that, for all admissible
 ∈ �,

�(S)= �(S,
∗)��(S,
),

where the above inequality is implied elementwise.

An algorithm for computing�(S) is presented below.

Algorithm 1. Computation of the worst-case performance
of supervisor S.
Step0. Let k = 0 and select
0 ∈ �.
Step1. Let
k+1 be such that1

�ij (S,
k+1)=
{max


∈�
�ij (S,
) if �j (S,
k) <0,

min

∈�

�ij (S,
) if �j (S,
k)�0.

Step2. If �(S,
k+1)= �(S,
k) then�(S)= �(S,
k+1)
and stop. Else letk← k + 1 and go to Step1.

The theorem below presents the formal result that indi-
cates that the above algorithm converges in a finite number
of steps.

Theorem 3. Given a supervisor S, the above algorithm con-
verges to its robust performance, i.e.,

�(S,
k)→ �(S).

Furthermore, it stops after n steps, where n is the number
of states of the automaton.

1 Note that a
k+1 can always be found since the uncertainty in each
entry of the matrix�(S,
) is independent of the uncertainty in the other
entries.

5. Proofs of Lemma 2 and Theorem 3

The results proven in this section could be derived using
a similar reasoning to the one inFu et al. (2004). However,
we present here a new approach that is needed to prove the
later results on robust controller design.

5.1. Additional notation

Given a supervisorS and uncertainty value
 ∈ �, let
T S


 : Rn→ Rn be defined as

T S

 (�)

.= �(S,
)�+X.

Furthermore, letT S : Rn→ Rn be given by

T S(�)=min

∈�

T S

 (�),

where the above minimum is taken entry by entry. Note that
T S


 (·) is well-defined since, as mentioned in Section 3.1,
the uncertainty in each entry of�(S,
) is independent of
the uncertainties in all other entries. Finally, givenx ∈ Rn,
define the max-norm‖x‖ = maxi |xi |. Given x, y ∈ Rn, it
follows thatx�y if xi �yi for all i = 1, 2, . . . , n. It also
follows thatx < y if x�y andxi < yi for somei.
Before providing the proofs of Lemma 2 and Theorem 3,

a number of relevant properties of the functionsT S

 (·) and

T S(·) are established as supporting lemmas.

Lemma 4. Let S be a supervisor and
 ∈ � be given, then
T S


 is a contraction.

Proof. Recall that there exists a	 ∈ (0,1) such that∑n
j=1�ij (S,
)�1 − 	 for all control policies. Now, let

x, y ∈ Rn be two vectors, then theith coordinate of
T S


 (x)− T S

 (y) satisfies the following inequality:

|(T S

 (x)− T S


 (y))i | = |[�(S,
)(x − y)]i |
�(1− 	)‖x − y‖.

Hence

‖T S

 (x)− T S


 (y)‖�(1− 	)‖x − y‖.
The proof is completed by noting that 0< 	<1. �

Lemma 5. Let S be a supervisor and let
,
′ ∈ � be given.
If T S


 (�(S,
′))��(S,
′) then

�(S,
)��(S,
′).

Proof. Note that, since all entries of�(S,
) are non-
negative then

x�y ⇒T S

 (x)=�(S,
)x+X��(S,
)y+X = T S


 (y).

Therefore, it follows that

(T S

 )2(�(S,
′)) .= T S


 [T S

 (�(S,
′)]

�T S

 (�(S,
′))��(S,
′).
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Repeating the above reasoning, for anyk,

(T S

 )k(�(S,
′))��(S,
′).

Now, by Lemma 4 and using the contraction mapping the-
orem (Naylor & Sell, 1982), it follows that

�(S,
)= lim
k→∞ (T S


 )k(�(S,
′))��(S,
′).

Corollary 6. Let S be a supervisor and let
,
′ ∈ � be
given. Then, T S


 (�(S,
′)) <�(S,
′) implies that

�(S,
) <�(S,
′).

Proof. By Lemma 5 it is known that�(S,
)��(S,
′). If
it is assumed that�(S,
)= �(S,
′), then

T S

 (�(S,
′))= T S


 (�(S,
))= �(S,
)= �(S,
′)

and a contradiction is reached.�

Corollary 7. Let S be a controllable supervisor. Then, the
operatorT S is a contraction.

Proof. Let x, y ∈ Rn be two vectors and let
y be the
control policy satisfyingT S(y)= T S


y
(y). Then,

T S(x)− T S(y)= min

∈�

T S

 (x)−min


∈�
T S


 (y)

= min

∈�

T S

 (x)− T S


y
(y)

�T S

y

(x)− T S

y

(y).

Hence,

(T S(x)− T S(y))i �[�(S,
y)(x − y)]i
� |[�(S,
y)(x − y)]i |
�(1− 	)‖x − y‖.

Exchanging the roles ofx andy, it follows that

(T S(y)− T S(x))i �(1− 	)‖x − y‖.
Hence,

|(T S(x)− T S(y))i |�(1− 	)‖x − y‖
and

‖(T S(x)− T S(y))‖�(1− 	)‖x − y‖.
The proof is completed by noting that 0< 	<1. �

Lemma 8. Let S andS′ be two supervisors, if T S(�(S′))�
�(S′) then �(S)��(S′). In addition, if T S(�(S′)) >�(S′)
then�(S) >�(S′).

Proof. Similar to the proofs of Lemma 5 and Corollary 6.
�

Having these preliminary results, one can now proceed
with the proofs of Lemma 2 and Theorem 3.

5.2. Proof of Lemma 2

First, note that, by Corollary 7,T S is a contraction. Hence,
there exists a�(S) such that

�(S)= T S(�(S))=min

∈�

T S

 (�(S)).

SinceT S

 (�(S)) depends continuously on
 and the min-

imization is done over the compact set�, then there ex-
ists a
∗ ∈ � such that�(S) = T S


∗(�(S)) and, therefore,
�(S)=�(S,
∗). Furthermore, for any supervisorSand any

 ∈ �, T S


 is a monotone operator, i.e.,

x�y ⇒ T S

 (x)�T S


 (y).

This is a direct consequence of the fact that the entries of
�(S,
) are nonnegative. This implies thatT S is a monotone
operator, i.e.,

x�y ⇒ T S(x)�T S(y).

Now, given any
 and the associated performance�(S,
),
the definition ofT S implies that

T S(�(S,
))�T S

 (�(S,
))= �(S,
).

Hence

�(S)= lim
k→∞ (T S)k(�(S,
))��(S,
).

Therefore,�(S)= �(S,
∗) and the proof is complete.

5.3. Proof of Theorem 3

Since�ij multiplies �j in the computation ofT (�), it

follows that 
k+1 in Step 1 of Algorithm 1 must satisfy the
condition

T S


k+1(�(S,
k))= min

∈�

T S

 (�(S,
k))

�T S


k (�(S,
k))= �(S,
k).

Hence, by Lemma 5,

�(S,
k+1)��(S,
k).

Moreover, the algorithm stops only if�(S,
k+1)=�(S,
k).
Therefore, the stopping rule is equivalent to having

�(S,
k+1)= T S


k+1(�(S,
k+1))
= T S


k+1(�(S,
k))=min

∈�

T S

 (�(S,
k)).

Hence,

�(S,
k)=min

∈�

T S

 (�(S,
k))= �(S).

To prove convergence inn steps, note that�(S,
k+1) �=
�(S,
k) if and only if there exists aj such that the sign
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of �j (S,
k+1) is different from the sign of�j (S,
k). More-

over,�(S,
k+1)��(S,
k). The above monotonicity prop-
erty implies that each entry of�j (S,
k) changes sign at

most one time and, since�(S,
k) is a vector of dimension
n, the algorithm will stop aftern steps.

6. Optimal robust supervisor

We now provide an algorithm that generates a sequence of
supervisors which converges to the most permissive robust
optimal supervisor in a finite number of steps.

Algorithm 2. Optimal robust supervisor design.
Step0. Let S0 be a controllable supervisor and letk= 0.
Step1.GivenSk, determine�(Sk) using Algorithm1.

Step 2. DetermineSk+1 by disabling the controllable
events leading to states with�

j
(Sk) <0 and enabling the

events leading to states with�
j
(Sk)�0.

Step3. If Sk+1= Sk then setS∗ = Sk, �(S∗)=�(Sk) and
stop. Else return to Step1 with k← (k + 1).

Theorem 9. The control policyS∗ obtained by Algorithm2
is an optimal control policy over the uncertainty range and
the robust performance of the closed-loop system is given by
�(S∗).Moreover, S∗ is the maximally permissive controller
among all robust optimal controllers. Furthermore, the al-
gorithm terminates in at most n steps,where n is the number
of states of the(deterministic) automaton of the plant model.

Proof. We start by introducing an additional function: Let
T : Rn→ Rn be defined as

T (�)
.= max

S
T S(�).

Some relevant properties ofT (·) are established in the fol-
lowing two lemmas. The proofs are omitted since they are
similar to the proofs of the lemmas in Section 5.

Lemma 10. The transformation T is a contraction.

Lemma 11. There exists aS∗ such that

�∗ = �(S∗)= T (�(S∗)).

Furthermore, for all supervisor S, �∗��(S).

The proof of Theorem 9 is started by noting thatSk+1 in
Step 1 ofAlgorithm 2 is chosen in such a way as to maximize
�ij when �j (S

k)�0 and minimize�ij when �j (S
k) <0.

Then, it follows that

T Sk+1
(�(Sk))=max

S
T S(�(Sk))�T Sk

(�(Sk))= �(Sk).

Hence, by Lemma 8,�(Sk+1)��(Sk). Moreover, the algo-

rithm stops only if�(Sk+1)= �(Sk) yielding

�(Sk+1)= T Sk+1
(�(Sk+1))

= T Sk+1
(�(Sk))=max

S
T S(�(Sk)).

Therefore,

�(Sk)=max
S

T S(�(Sk))= �(S∗),

whereS∗ is the optimal controller. To prove convergence
in n steps, note that�(Sk+1) �= �(Sk) if and only if there

exists aj such that the sign of�
j
(Sk+1) is different from the

sign of �
j
(Sk). Because of the fact that�(Sk+1)��(Sk),

this monotonicity property implies that each entry of�
j
(Sk)

changes sign at most one time and, since�
j
(Sk) is a vector

of dimensionn, the algorithm will stop after at mostn steps.
To prove that the controllerS∗ obtained is the most per-

missive one among all the optimal controllers, let�∗ be the
optimal performance and letS∗ be the set of all optimal
supervisors. Then,

S∗ = {S : T (�∗)= T S(�∗)= �∗}.
Given this, all supervisors inS∗ only differ in the enabling
or disabling or events leading to statesqj with optimal per-
formance�∗

j
= 0. Since the supervisorS∗ ∈ S∗ obtained

by the algorithm enables all events leading to statesqi with
�∗

i
�0, then it is maximally permissive among all optimal

supervisors inS∗.

7. Summary and conclusions

This paper presents the theory of a state-based robust op-
timal control policy of regular languages for finite state au-
tomata that may have already been subjected to constraints
such as control specifications (Ramadge &Wonham, 1987).
The synthesis procedure is quantitative and relies on a re-
cently developed signed real measure of formal languages
(Wang & Ray, 2004). The objective is to maximize the
worst-case performance vector over the event cost uncer-
tainty range without any further constraints. The robust op-
timal control policy maximizes performance by selectively
disabling controllable events that may terminate on “bad”
marked states and, simultaneously, ensuring that the remain-
ing controllable events are kept enabled. The worst-case per-
formance is guaranteed within the specified event cost un-
certainty bounds. The control policy induced by the updated
state transition cost matrix yields maximal performance and
is unique in the sense that the controlled language is the most
permissive (i.e., least restrictive) among all controller(s) hav-
ing robust optimal performance. The computational com-
plexity of the robust optimal control synthesis procedure is
polynomial in the number of states of the automaton.
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Future areas of research in robust optimal control include:
(i) incorporation of the cost of disabling controllable events
(Cury & Krogh, 1999) and (ii) robustness of the control pol-
icy relative to other uncertainties in the plant model includ-
ing loss of controllability and observability.
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