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Abstract Symbolic dynamic filtering (SDF) has been
recently reported in literature as a pattern recognition tool for
early detection of anomalies (i.e., deviations from the nom-
inal behavior) in complex dynamical systems. This paper
presents a review of SDF and its performance evaluation rel-
ative to other classes of pattern recognition tools, such as
Bayesian Filters and Artificial Neural Networks, from the
perspectives of: (i) anomaly detection capability, (ii) deci-
sion making for failure mitigation and (iii) computational
efficiency. The evaluation is based on analysis of time series
data generated from a nonlinear active electronic system.
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1 Introduction

Anomaly is defined as deviation from nominal behavior of
a dynamical system. For many human–engineered complex
systems, early detection of anomalies with low false alarm
rates mitigates the risk of forthcoming failures. Recently,
Ray and coworkers [1–4] have developed a novel pattern
identification technique, called symbolic dynamic filtering
(SDF). This tool has been used early detection of anomaly
patterns in dynamical systems, possibly due to parametric
or non-parametric changes. While abrupt changes of large
magnitude are not difficult to detect, SDF specifically meets
the challenge of detecting slowly evolving anomalies at an
early stage. The core concept of SDF is built on identifica-
tion of statistical patterns from symbol sequences generated
by coarse-graining of time series data [1,5,6]. These statis-
tical patterns represent behavior of the dynamical system,
which may change with the evolution of anomaly(ies). The
key idea here is to quantify small deviations of the current pat-
tern from the nominal pattern. In essence, SDF is a dynamic
data-driven method for statistical pattern recognition. The
information contained in a time series is compressed in the
form of a probability histogram that may evolve with the
anomaly progression.

This paper reviews the underlying theory of SDF and its
performance evaluation from the perspectives of: (i) anomaly
detection capability, (ii) decision making for failure mitiga-
tion and (iii) computational efficiency. Specifically, SDF is
compared with other pattern recognition methods such as
Bayesian Filtering, which is both model-based and dynamic
data-driven, and is capable of detecting parametric or non-
parametric changes in the model. The Kalman (Extended
Kalman) Filter [7] is often adequate for linear (linearized)
systems, but it may fail to capture the dynamics of a nonlin-
ear system, specifically with non-additive uncertainties [8].
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Recent literature has reported Monte Carlo Markov Chain
(MCMC) techniques such as Particle Filtering [9], and Sigma
Point techniques such as Unscented Kalman filtering [10] that
yield numerical solutions to Bayesian state estimation prob-
lems and have been applied for anomaly detection in nonlin-
ear dynamical systems [11]. In addition to Bayesian Filtering,
this paper investigates other classes of well-known pattern
recognition tools such as artificial neural networks (ANN),
principal component analysis (PCA), and Kernel regression
analysis (KRA) for pattern change detection [12]. In the class
of ANN, mutilayer perceptron [13] and radial basis function
[14] configurations have been widely used for detection of
anomalous patterns. PCA [15] and KRA [16] are also com-
monly used for data-driven pattern recognition.

From the above perspectives, major contributions of this
paper are outlined below.

(1) A unified review of the underlying theories of SDF
based on the work reported in a scattered manner in
previous publications [1–5]

(2) Comparative evaluation of SDF performance relative to
other pattern recognition techniques in terms of:

• Quality of anomaly detection (e.g., enhanced detec-
tion capability and reduced rate of false alarm) and
decision making for mitigation of forthcoming fail-
ures)

• Computational efficiency (e.g., execution time and
memory requirements) of SDF for real-time opera-
tion

The paper is organized into five sections and an appen-
dix. Section 2 reviews the concept of SDF and delineates
its salient features. Section 3 explains how anomaly detec-
tion algorithms are constructed for different pattern recog-
nition tools. Section 4 presents and comparatively evaluates
the results for different pattern recognition tools. Section 5
summarizes and concludes the paper along with recommen-
dations for future research. Appendix A briefly reviews the
underlying principles of the pattern recognition tools that are
compared with SDF.

2 Review of SDF

The theory of SDF for time series data analysis is built upon
the principles of nonlinear dynamics [17], symbolic dynamics
[18], information theory [19], and statistical pattern recog-
nition [12]. This section presents the underlying concepts
and salient features of SDF for anomaly detection in com-
plex dynamical systems. While the details are reported as
pieces of information in previous publications [1–5], the
essential concepts of space partitioning, symbol generation,
and construction of a finite-state machine from the generated
symbol sequence are succinctly explained in this section for
completeness of this paper.

Detection of anomaly patterns is formulated as a two-time-
scale problem. The fast time scale is related to response time
of the process dynamics. Over the span of a given time series
data sequence, dynamic behavior of the system is assumed
to remain invariant, i.e., the process is quasi-stationary at the
fast time scale. In other words, the variations in the behavior
of system dynamics is assumed to be negligible on the fast
time scale. The slow time scale is related to the time span over
which parametric or non-parametric changes may occur and
exhibit non-stationary dynamics [1,20]. The concept of two
time scales is illustrated in Fig. 1.

An observable non-stationary behavior of the system
dynamics can be associated with the anomalies evolving at a
slow time scale. In general, a long time span in the fast time
scale is a tiny (i.e., several order of magnitude smaller) inter-
val in the slow time scale. For example, evolution of anom-
alies (causing a detectable change in the system dynamics)
may occur on the slow time scale in the order of hundreds
of hours of operation. In contrast, the process dynamics may
remain essentially invariant on the fast time scale in the order
of seconds. Nevertheless, the notion of fast and slow time
scales is dependent on the specific application, loading con-
ditions and operating environment. From the perspective of
anomaly pattern detection, time series data sets are collected
on the fast time scale at different slow time epochs separated
by uniform or non-uniform intervals.

The continuously varying process of system dynamics is
often modeled as a finite-dimensional dynamical system in
the setting of an initial value problem as:

dx(t)

dt
= f (x(t), θ(ts)); x(0) = x0, (1)

where t ∈ [0,∞) denotes the (fast-scale) time; x ∈ R
n is

the state vector in the phase space; and θ ∈ R
� is the (pos-

sibly anomalous) parameter vector varying in (slow-scale)
time ts . Sole usage of the model in Eq. (1) may not always
be feasible due to parametric and non-parametric uncertain-
ties and noise. A convenient way of learning the dynamical
behavior is to rely on the additional information provided by
(sensor-based and/or model-based) time series data [21,22].

Fast time scale

Slow time scale

t1 ti tm

Fig. 1 Pictorial view of the two time scales: (i) Slow time scale of
anomaly evolution and (ii) Fast time scale of data acquisition
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2.1 Symbolic dynamics, encoding, and state machine

This subsection briefly describes the concepts of symbolic
dynamics, encoding nonlinear system dynamics from
observed time series data, and state machine construction
for generation of symbol sequences. It also presents a proce-
dure for online computation of the machine state probability
vectors that are representatives of the evolving patterns of the
system’s dynamical characteristics.

Let � ∈ R
n be a compact (i.e., closed and bounded)

region, within which the trajectory of the dynamical system,
governed by Eq. (1), is circumscribed as illustrated in Fig. 2.
The region � is partitioned into a finite number of (mutually
exclusive and exhaustive) cells, so as to obtain a coordinate
grid. Let the cell, visited by the trajectory at a time instant, be
denoted as a random variable taking a symbol value from the
alphabet �. An orbit of the dynamical system is described
by the time series data as {x0, x1, . . . , xk, . . .} with xi ∈ �,
which passes through or touches one of the cells of the par-
tition. Each initial state x0 ∈ � generates a sequence of
symbols defined by a mapping from the phase space into the
symbol space as:

x0 → s0s1s2 · · · sk · · · (2)

where each si , i = 0, 1, . . . takes a symbol from the
alphabet �.

The mapping in Eq. (2) is called symbolic dynamics as
it attributes a legal (i.e., physically admissible) sequence
of symbols to the system dynamics starting from an initial
state. (Note: A symbol alphabet � is called a generating
partition of the phase space � if every legal sequence of
symbols uniquely determines a specific initial condition x0,
i.e., every symbolic orbit uniquely identifies one continuous
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Fig. 2 Concept of symbolic dynamic filtering (SDF)

space orbit.) Figure 2 pictorially elucidates the concepts of
partitioning a finite region of the phase space and the map-
ping from the partitioned space into the symbol alphabet.
This represents a spatial and temporal discretization of the
system dynamics defined by the trajectories. Figure 2 also
shows conversion of the symbol sequence into a finite-state
machine as explained in the following subsections.

Symbolic dynamics can be viewed as coarse graining of
the phase space, which is subjected to (possible) loss of infor-
mation resulting from granular imprecision of partitioning
boxes. However, the essential robust features (e.g., periodic-
ity and chaotic behavior of an orbit) need to be preserved in
the symbol sequences through an appropriate partitioning of
the phase space [23].

2.2 Space partitioning

A crucial step in SDF is partitioning of the phase space for
symbol sequence generation [1]. Several partitioning tech-
niques have been reported in literature for symbol generation.
These techniques are primarily based on symbolic false near-
est neighbors (SFNN) [24], which may become cumbersome
and extremely computation-intensive if the dimension of the
phase space is large. Moreover, for noise-corrupted time
series data, the symbolic false neighbors would rapidly grow
in number and require a large symbol alphabet to capture the
pertinent information on the system dynamics. Therefore,
symbolic sequences as representations of the system dynam-
ics should be generated by alternative methods because
phase-space partitioning might prove to be a difficult task
in the case of high dimensions and presence of noise. The
wavelet transform [25] largely alleviates these shortcom-
ings and is particularly effective with noisy data from high-
dimensional dynamical systems [4]. A comparison of wavelet
partitioning and other partitioning methods, such as SFNN,
is reported in recent literature [5], where wavelet partitioning
has been shown to yield comparable performance with sev-
eral orders of magnitude smaller execution time. This feature
is very important for real-time detection of anomaly patterns.

In wavelet-based partitioning, the time series data are first
converted to wavelet domain, where wavelet coefficients are
generated at different time shifts. The wavelet space is then
partitioned with alphabet size |�| into segments of coeffi-
cients on the ordinate separated by horizontal lines. In the
illustrative example of Fig. 3, the partitioning has been done
to create |�| = 10 cells (i.e., intervals along the ordinate in
this case). The choice of |�| depends on specific experiments,
noise level and also the available computation power. A large
alphabet may be noise-sensitive while a small alphabet could
miss the details of signal dynamics.

Once the partitioning is done with alphabet size |�| at
the nominal condition (time epoch t0), it is kept constant
for all (slow time) epochs {t1, t2, . . . tk . . .}, i.e., the structure
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Fig. 3 Example of space partitioning

of the partition is fixed at the nominal condition. Therefore,
the partitioning structure generated at the nominal condition
serve as the reference frame for data analysis at subsequent
slow time epochs.

2.3 State machine construction

The partitioning (see Fig. 2) is performed at the slow time
epoch t0 of the nominal condition that is chosen to be the
healthy state having zero anomaly measure. A finite state
machine is then constructed, where the states of the machine
are defined corresponding to a given alphabet set � and win-
dow length D. The alphabet size |�| is the total number of
partition segments while the window length D is the length of
consecutive symbol words [1], which are chosen as all possi-
ble words of length D from the symbol sequence. Each state
belongs to an equivalence class of symbol words of length D
or more, which is characterized by a word of length D at the
leading edge. Therefore, the number n of such equivalence
classes (i.e., states) is less than or equal to the total permu-
tations of the alphabet symbols within words of length D.
That is, n ≤ |�|D; some of the states may be forbidden with
zero probability of occurrence. For example, if � = {0, 1},
i.e., |�| = 2 and if D = 2, then the number of states is
n ≤ |�|D = 4; and the possible states are 00, 01, 10 and 11,
as shown in Fig. 4.

The choice of |�| and D depends on specific experiments,
noise level and also the available computation power. A large
alphabet may be noise-sensitive and a small alphabet could
miss the details of signal dynamics. Similarly, while a larger
value of D is more sensitive to signal distortion, it would
create a much larger number of states requiring more com-
putation power.

Using the symbol sequence generated from the time series
data, the state machine is constructed on the principle of slid-
ing block codes [18]. The window of length D on the symbol
sequence . . . σi1 σi2 . . . σik . . . is shifted to the right by one
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Fig. 4 Example of finite state machine with D = 2 and � = {0, 1}

symbol, such that it retains the last (D-1) symbols of the pre-
vious state and appends it with the new symbol σi� at the end.
The symbolic permutation in the current window gives rise to
a new state. The machine constructed in this fashion is called
the D-Markov machine [1], because of its Markov prop-
erties. A symbolic stationary process is called D-Markov
if the probability of the next symbol depends only on the
previous D symbols, i.e., P

(
σi0 |σi−1 . . . σi−D σi−D−1 . . .

) =
P

(
σi0 |σi−1 . . . σi−D

)
.

The finite state machine constructed above has D-Markov
properties because the probability of occurrence of symbol
σi� on a particular state depends only on the configuration of
that state, i.e., the previous D symbols. Once the alphabet size
|�| and word length D are determined at the nominal condi-
tion (i.e., time epoch t0), they are kept constant for all slow
time epochs {t1, t2, . . . tk . . .}. That is, the partitioning and the
state machine structure generated at the nominal condition
serve as the reference frame for data analysis at subsequent
slow time epochs.

The states of the machine are marked with the correspond-
ing symbolic word permutation and the edges joining the
states indicate the occurrence of a symbol σi� . The occur-
rence of a symbol at a state may keep the machine in the
same state or move it to a new state. On a given symbol
sequence . . . σi1σi2 . . . σil . . . generated from the time series
data collected at a slow time epoch, a window of length
D is moved by keeping a count of occurrences of word
sequences σi1 · · · σiD σiD+1 and σi1 · · · σiD which are respec-
tively denoted by N (σi1 · · · σiD σiD+1) and N (σi1 · · · σiD ).
Note that if N (σi1 · · · σiD ) = 0, then the state q ≡ σi1 · · ·
σiD ∈ Q has zero probability of occurrence. For N (σi1 · · ·
σiD ) �= 0, the transitions probabilities are then obtained by
these frequency counts as follows:

π jk ≡ P(qk |q j ) = P(qk, q j )

P(q j )
= P(σi1 · · · σiD σ)

P(σi1 · · · σiD )

⇒ π jk ≈ N (σi1 · · · σiD σ)

N (σi1 · · · σiD )
(3)

where the corresponding states are denoted by q j ≡
σi1σi2 · · · σiD and qk ≡ σi2 · · · σiD σ . The state transition

123



SIViP (2009) 3:101–114 105

matrix, � = [π ] jk , satisfies the properties of a stochastic
matrix, i.e., �kπ jk = 1 ∀ j .

2.4 Stopping rule for determining symbol sequence length

This subsection presents a stopping rule that is necessary to
find a lower bound on the length of symbol sequence required
for parameter identification of the stochastic matrix �. The
stopping rule [26] is based on the properties of irreducible
stochastic matrices [27]. The state transition matrix is con-
structed at the r th iteration (i.e., from a symbol sequence of
length r) as �(r) that is an n×n irreducible stochastic matrix
under stationary conditions. Similarly, the state probability
vector p(r) ≡ [p1(r) p2(r) · · · pn(r)] is obtained as

pi (r) = ri∑n
j=1 r j

(4)

where ri is the number of symbols in the i th state such that∑n
i=1 ri = r for a symbol sequence of length r. The stop-

ping rule makes use of the Perron–Frobenius theorem [27]
to establish a relation between the vector p(r) and the matrix
�(r). Since the matrix �(r) is stochastic and irreducible,
there exists a unique eigenvalue λ = 1 and the correspond-
ing left eigenvector p(r) (normalized to unity in the sense of
absolute sum). The left eigenvector p(r) represents the state
probability vector, provided that the matrix parameters have
converged after a sufficiently large number of iterations. That
is,

p(r +1) = p(r)�(r) ⇒ p(r) = p(r)�(r) as r → ∞ (5)

Following Eq. (4), the absolute error between successive iter-
ations is obtained such that

‖ (p(r) − p(r + 1)) ‖∞=‖ p(r) (I − �(r)) ‖∞≤ 1

r
(6)

where ‖ • ‖∞ is the max norm of the finite-dimensional
vector •.

To calculate the stopping point rstop, a tolerance of η (0 <

η � 1) is specified for the relative error such that:

‖ (p(r) − p(r + 1)) ‖∞
‖ (p(r)) ‖∞

≤ η ∀ r ≥ rstop (7)

The objective is to obtain the least conservative estimate
for rstop such that the dominant elements of the probability
vector have smaller relative errors than the remaining ele-
ments. Since the minimum possible value of ‖ p(r) ‖∞ for
all r is 1

n , where n is the dimension of p(r), the least of most
conservative values of the stopping point is obtained from

Eqs. (6) and (7) as:

rstop ≡ int

(
n

η

)
(8)

where int (•) is the integer part of the real number •. At the
(slow time) epoch tk , the state probability vector is denoted
as pk .

2.5 Anomaly evolution and pattern identification

Behavioral pattern changes may take place in dynamical sys-
tems due to accumulation of faults and progression of anom-
alies. The pattern changes are quantified as deviations from
the nominal pattern (i.e., the probability distribution at the
nominal condition). The resulting anomalies (i.e., deviations
of the evolving patterns from the nominal pattern) are charac-
terized by a scalar-valued function, called Anomaly Measure
µ. The anomaly measures at slow time epochs {t1, t2, . . .}
are obtained as:

µk ≡ d
(

pk, p0
)

where the d(•, •) is an appropriately defined distance func-
tion.

The major advantages of SDF for small anomaly detec-
tion are listed below:

• Robustness to measurement noise and spurious signals
[5]

• Adaptability to low-resolution sensing due to the coarse
graining in space partitions [1]

• Capability for early detection of anomalies because of
sensitivity to signal distortion and real-time execution on
commercially available inexpensive platforms [3].

3 Construction of anomaly detection algorithms

This section explains how anomaly detection algorithms are
constructed for SDF and several other pattern recognition
tools that are briefly described in Appendix A.

3.1 Symbolic dynamic filtering for anomaly detection

The following steps, summarize the procedure of SDF for
anomaly detection.

• Time series data acquisition on the fast scale from sen-
sors and/or analytical measurements (i.e., outputs of a
physics-based or an empirical model). Data sets are col-
lected at slow time epochs, t0, t1, t2, . . . tk . . ..
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• Generation of wavelet transform coefficients [25],
obtained with an appropriate choice of the wavelet basis
and scales [5]. The wavelet transform largely alleviates
the difficulties of phase-space partitioning and is partic-
ularly effective with noisy data from high-dimensional
dynamical systems [4].

• Partitioning [5] of the wavelet space at the nominal con-
dition at time epoch t0. Each segment of the partitioning
is assigned a particular symbol from the symbol alpha-
bet set 
. This step enables transformation of time series
data from the continuous domain to the symbolic domain
[18]. The partitioning is fixed for subsequent slow time
epochs. However, new partitioning would be necessary if
the nominal condition is changed.

• Construction of a finite state automaton at time epoch
t0 (nominal condition) from alphabet size |
| and win-
dow length D. The structure of the finite state machine is
fixed for subsequent slow time epochs {t1, t2, . . . tk . . .},
i.e., the state machine structure generated at the nominal
condition serve as the reference frame for data analysis
at subsequent slow time epochs.

• Generation of state probability vectors The probabil-
ity vectors pk, k = 0, 1, 2, . . . are recursively computed
as an approximation of the natural invariant density of
the dynamical system at the slow time epochs tk, k =
0, 1, 2, . . ., which are fixed points of the respective
Perron–Frobenius operators [27].

• Computation of scalar anomaly measures µ1, µ2, . . . ,

µk, . . . at time epochs, t1, t2, . . . , tk, . . . based on evo-
lution of these probability vectors and by defining an
appropriate distance function d(pk, p0) with respect to
the nominal condition [1]. There are different choices
of the distance function for computation of the anomaly
measure [1]. In this paper, the standard Euclidean norm is
chosen as the distance function. Thus, the pattern changes
in the state probability vector are quantified as deviations
from the nominal behavior and are characterized by a
scalar-valued function, called anomaly measure µ.

3.2 Bayesian filtering for anomaly detection

Bayesian filtering tracks the states more effectively if the sys-
tem is closer to the nominal condition. In other words, the
error would be greater if the system is in an anomalous con-
dition. To this effect, the innovation sequences are computed,
and their histograms are obtained, where the innovation ε is
defined as the difference between the true output y and the
predictor output ŷ−[7].

In the nominal condition, the model is a very close approx-
imation of the data that is generated, and the system is able
to estimate the states with the lowest error. The histogram of
the innovation sequence thus resembles a Gaussian sequence

with very small variance. As the anomaly increases, the model
becomes less accurate and the estimation errors become
higher. Thus, the histogram of the innovation sequence shows
an increase in the variance and the distribution diverges from
Gaussian. Ultimately, the histograms are expected to con-
verge to a uniform distribution if the filters no longer track
the system. This increase is characterized as a measure of the
anomaly. To this effect, the probability density of the inno-
vation sequences pk(ε) are generated at slow time epochs tk
and the anomaly measure at any epoch k is given by an appro-
priate distance function d(pk(ε), p0(ε)) between the density
functions at epoch tk and at nominal condition at epoch t0.
The distance function is chosen as the standard Euclidean
norm in this paper.

3.3 Neural networks for anomaly detection

The training data set for both types of neural networks,
namely, radial basis function neural networks (RBFNN) and
multi layer perceptron neural networks (MLPNN) (see
Appendix A), are prepared in the same manner. In both cases,
the neural networks are trained based on standard nonlin-
ear autoregressive network with exogenous inputs (NARX)
model [28] from the input–output data sets at the nominal
condition. Thus, the training input vector for the networks
contain the current input u(k +1), the current output y(k +1)

as well as two past outputs, y(k) and y(k − 1). The target
for the network is the current output y(k + 1). After an error
goal is achieved, the neural network is allowed to track the
output signal of the system under both nominal and anom-
alous conditions. Upon feeding the input of the (possibly)
anomalous system, the neural network generates an output
signal estimate ŷ. The innovation εk � (yk − ŷk) serves as a
measure for the tracking performance of the neural network
filters. The probability density function (pdf) is created for
the innovation sequence. If at nominal condition the pdf is p0

and the pdf at slow time epoch tk is pk , then the anomaly mea-
sure is given by the distance d(pk, p0). The distance function
is chosen as the standard Euclidean norm in this paper.

3.4 Statistical methods for anomaly detection

Two statistical analysis methods, namely, PCA and KRA
(see Appendix A) have been investigated.

Principal Component Analysis serves as a feature selector
in the pattern analysis via dimension reduction from n to m.
The n × n covariance matrix, obtained from the time series
data, generates the orthonormal eigenvectors vk and the cor-
responding non-negative real eigenvalues λk . The eigenval-
ues are arranged in the increasing order of magnitude. The m
largest eigenvalues and associated eigenvectors are selected
such that

∑m
i=1 λi > η

∑n
i=1 λi , where η is a real positive

fraction close to 1 (e.g., η ≥ 0.95). The principal feature
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matrix F is defined as:

F =
[√

λ1∑m
i=1 λ1

v1 . . .
√

λd∑m
i=1 λd

vd
]

(9)

The feature matrix F0 represents the status of the system
derived from the time series data at the nominal condition
t0. Similarly, feature matrix Fk is obtained from time series
data at slow time epoch tk . Then, the anomaly measure at tk
is obtained as the distance d(Fk, F0). The distance function
is chosen as the standard Euclidean norm in this paper.

In KRA, the kernel estimator is f̂0(x) at the nominal con-
dition. For different anomalous conditions, the regression
parameters µ and θα are kept fixed; and the kernel estima-
tor f̂k(x) is evaluated from the data set under the (possibly
anomalous) condition at the slow time epoch tk . Then, the
anomaly measure at the kth epoch is obtained as the distance
d( f̂k, f̂0). The distance function is chosen as the standard
Euclidean norm in this paper.

4 Experimental validation, results, and discussion

Symbolic dynamic filtering has been experimentally vali-
dated for anomaly detection in large order and distributed
parameter systems [3,29,30]. However, in these systems, it
is difficult to obtain a clearly decisive evaluation of SDF
performance by comparison with other pattern recognition
tools (e.g., particle filtering) because of potential errors and
ambiguities in modeling of both process dynamics and noise
statistics. This section presents the results of anomaly detec-
tion experimentation on an active electronic circuit apparatus
[4] that implements a second order non-autonomous, forced
Duffing equation [31]. The rationale for selecting the forced
Duffing system as a platform for comparative evaluation of
SDF with other pattern recognition tools is as follows:

• Nonlinear non-stationary dynamics (e.g., existence of
many bifurcation points leading to chaos) that provide
sufficient complexity for performance comparison under
different scenarios

• Ergodic dynamical behavior that allows generation of
quasi-stationary time series data

• Low order dynamical structure, where the salient con-
cepts can be unambiguously observed.

The governing equation of the forced Duffing system with
a cubic nonlinearity in one of the state variables, as imple-
mented in the electronic circuit apparatus, is given below:

d2 y

dt2 + β(ts)
dy

dt
+ y(t) + y3(t) = A cos(ωt) (10)

The dissipation parameter β(ts), realized as a resistance
in the circuit, varies in the slow time ts and is treated as a

constant in the fast time t at which the dynamical system
is excited. The goal is to detect, at an early stage, changes
in β(ts) that is associated with the anomaly. In this paper,
the effects of growth in β(ts) are presented as the response
of a stimulus with amplitude A = 22 and frequency ω =
5. It is observed that changes in the stationary behavior of
the electronic system take place with gradual increase in the
dissipation parameter β starting from the nominal value of
0.10, with a significant disruption occurring in the narrow
range of 0.32 to 0.34. The stationary behavior of the system
response for this input stimulus is obtained for several values
of β in the range of 0.10 to 0.40. The four plates, 5a to 5d, in
the first row of Fig. 5 exhibit four phase plots for the values
of the parameter at 0.10, 0.30, 0.32, and 0.34, respectively.
Each plot relates the phase variable of electrical charge y(t)
that is proportional to the voltage across one of the capacitors
in the electronic circuit, with its time derivative dy/dt (i.e.,
the instantaneous current). While a small difference between
the phase plots for β = 0.10 and β = 0.30 is noticeable,
there is no clearly visible difference between the plots for
β = 0.30 and β = 0.32 in Plates 5b and 5c. However, the
phase plots for β = 0.32 and β = 0.34 in Plates 5c and 5d,
display a very large difference, indicating period doubling
possibly due to onset of bifurcation.

The four plates 5e to 5h in the second row of Fig. 5 exhibit
four histograms that are pattern vectors generated by SDF
for β equal to 0.10, 0.30, 0.32, and 0.34, respectively. Pat-
tern recognition capability of SDF is seen by comparison
of Plates 5f and 5g that are significantly different although
the corresponding phase plots in Plates 5b and 5c are almost
identical. As a matter of fact, SDF is the only method tested
in this paper, which is capable of making a clear distinc-
tion between the cases of β = 0.30 and β = 0.32. Further
increase in β causes an abrupt change in the pattern vector at
β ≈ 0.33 as seen in Plate 5h. This is indicative of a transition
to significantly different dynamical behavior.

The four plates 5i to 5� in the third row of Fig. 5 exhibit
four probability density functions that are considered as the
patterns generated by RB F N N for β equal to 0.10, 0.30,
0.32, and 0.34, respectively. It is also seen in Plate 5l that a
sudden change in the shape of probability distribution occurs,
indicating a transition to a significantly different dynamical
behavior.

The four plates 5m to 5p in the fourth row of Fig. 5
exhibit four probability density functions that are considered
as the patterns generated by P F for β equal to 0.10, 0.30,
0.32, and 0.34, respectively. It is observed that the variance
of the (non-Gaussian) probability distribution of innovation
increases with β. This is indicative of increasing state esti-
mation error due to modeling inaccuracy. The remarkable
trait in Plates 5n to 5p is that the structure of the innovation
probability density changes from unimodal to bimodal, indi-
cating an obvious departure from Gaussian. Abrupt change
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Fig. 5 Evolution of anomaly patterns for changes in system dynamics

in the innovation probability density in 5p is due to signif-
icantly different dynamical behavior of the system beyond
bifurcation at β ≈ 0.33.

Plots of the normalized anomaly measure µ versus the
dissipation parameter β are exhibited in Fig. 6a and 6b. The
profiles in each of these two figures exhibit the growth of µ

as β increases from the nominal value of β = 0.10 to the
drastically changed condition at β ≥ 0.34. All profiles show
initial gradual increase in µ with β. Observation of these
modest changes in the anomaly measure provides very early
warnings for a forthcoming catastrophic change, indicated
by the gradual evolution in the growth curve.

Figure 6a compares SDF for detection of anomaly patterns
to MLPNN and RBFNN as well as PCA. The MLPNN con-
sists of three hidden layers with 50 neurons in each one of

them and an output layer with one neuron (as the number
of output is one). Tangent sigmoid functions have been used
in the hidden layers as transfer functions, while the output
layer uses a linear function. On the other hand, the RBFNN
uses only one hidden layer and one output layer (with one
neuron) as described earlier. Optimal training was obtained
using 100 neurons in the hidden layer. The hidden layer uses
radial basis function, whereas the output layer uses linear
function as transfer functions.

Training of MLPNN and RBFNN makes use of the same
input–output set of time-series data at the nominal condition,
i.e., with β = 0.10 at the time epoch t0. In both cases, the
error goals are chosen so that the network could follow the
target with reasonable accuracy. For output estimation of
the networks, 4,000 data points have been chosen from the
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Fig. 6 Evaluation of anomaly measure

steady-state input–output time series data of the system. The
error sequence is generated by taking point by point differ-
ence between the system output and the output generated
from the neural networks. The anomaly measure µ is calcu-
lated as described in Sect. 3.

Figure 6b compares the performance of SDF with
Bayesian filter-based methods [i.e., particle filter (PF) and
unscented filter (UKF)]. These filters are calibrated to the
nominal condition of β = 0.10, and the filter is designed to
track both states (e.g., y(t) and dy/dt), where 50 particles
are used for the particle filter, as a tradeoff between tracking
performance in the nominal conditions and CPU execution
time and memory requirements. For unscented filtering, the
parameter κ is set equal to 3 (see Appendix A), which is
reported to be optimal for Gaussian priors [10]. For both PF
and UKF, the variance of the zero-mean Gaussian process
noise is set to 0.01 and the variance for zero-mean Gaussian

Table 1 Comparison of execution time

Anomaly detection Execution Memory
method time (s) requirement (MB)

KRA 2.23 × 10−3 2.95

PCA 4.30 × 10−2 2.88

RBFNN 8.09 × 10−1 4.05

MLPNN 4.60 × 100 4.15

SDF 4.65 × 100 2.94

UKF 5.10 × 101 4.19

PF 2.74 × 102 4.69

measurement noise is 0.05. The MCMC analysis for PF has
been carried out on 10,000 data points, sampled at a rate of
Ts = 0.01.

The family of anomaly measure profiles in Fig. 6a and 6b
exhibit gradual increase in µ until after the bifurcation at
β ≈ 0.33. Changes in the value of µ, its slope (i.e., ∂µ

∂β
), and

its curvature (i.e., ∂2µ

∂β2 ) provide early warnings for a forth-
coming major change in the system dynamics. From this
perspective, the performance of SDF is superior to that of
Bayesian filtering, both types of Neural networks, and other
statistical methods (i.e., PCA and KRA). It is also noted that
the profile of SDF is smoother than those of PF and UKF.
The smoothness of SDF reduces false alarms particularly for
small changes in β from the nominal condition. Similarly,
SDF outperforms RBFNN, MLPNN, PCA, and KRA.

Table 1 provides a comparison of execution time and mem-
ory requirement of the afore-mentioned seven methods for
computation of the anomaly measure µ. In each case, the
CPU time for a single operation cycle at a time epoch, listed
in Table 1, is obtained from the average of execution time
for operation cycles at 16 consecutive slow time epochs on a
3.40 GHz Pentium 4 processor in the Matlab 7.0.1 environ-
ment. As seen in Table 1, the execution time varies from a
fraction of millisecond for KRA to hundreds of seconds for
PF. Execution time for Neural Network-based methods and
SDF are comparable although RBFNN is faster than MLPNN
and SDF. However, Bayesian filters UKF and PF are one
and two orders of magnitude slower than SDF, respectively.
The requirement of (random access) memory in each case is
more or less similar (less than 5 MB), which is insignificant
for a commercially available laptop computer. However, for
RBFNN and MLPNN, the training phase requires 45–60 MB
of memory, which is also reasonable.

5 Summary, conclusions and future work

This paper presents a unified review of the underlying theo-
ries of SDF and compares its performance with three classes
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of pattern recognition techniques that are commonly used
for anomaly detection in dynamical systems. The compara-
tive evaluation is based on a non-linear dynamical system,
represented by the forced Duffing equation, with a slowly
varying dissipation parameter. The time series data are con-
verted to symbol sequences, which are then represented as
a finite-state automaton, called the D-Markov machine [1].
Quasi-stationary behavior of the dynamical system in the fast
time scale is extracted in the form of a probability histogram
that serves as the pattern vector. The evolution of this pat-
tern vector yields a measure of the anomaly that this system
undergoes in the slow time scale.

In Bayesian methods, as opposed to SDF, a nonlinear state
estimator is designed for the nominal condition of the system.
Two such nonlinear estimators, studied in this paper, are UKF
[10] and the PF [9]. This nonlinear estimator is then applied
to the system as the anomaly evolves, and probability density
of the resulting innovation sequence is the pattern vector. A
measure is derived for evolution of the pattern vector, which
is a representation of the anomaly in the slow time scale.

A similar procedure is applied for multi layer perceptron
and radial basis function neural networks and also for sta-
tistical methods of principal component analysis [15] and
kernel regression analysis [16], which are first trained on the
nominal condition, and then are analyzed on the anomalous
system. The distance between the state error probability den-
sity functions serves as a measure of the evolving anomaly.

Symbolic dynamic filtering has been tested in other appli-
cations such as fatigue damage in polycrystalline alloys [3],
where its superior performance for early detection of anom-
alies has been demonstrated relative to ANN and PCA, but
its performance had not been compared with that of Bayesian
methods. The conclusions, derived from the work reported
in this paper, are delineated as follows:

(1) Symbolic Dynamic Filtering provides the best results in
terms of early detection capability, speed of execution,
smoothness of anomaly detection curve and a sharp rep-
resentation at the bifurcation point that is analogous to
the onset of a large failure.

(2) Statistical and neural network tools of pattern recog-
nition perform at a speed comparable to that of sym-
bolic dynamic filtering. However, they do not capture
the gradual evolution of anomalies as early as SDF does.

(3) Bayesian methods have the advantage of computing the
estimated states. However, excessive computation time
requirements complicate implementation of Bayesian
algorithms in real-time applications. The situation
rapidly deteriorates as the order of the dynamical sys-
tem is increased.

A major advantage of working with SDF is that pattern
vectors are computed in real time and can be effectively

transmitted over mobile wireless networks, thus making SDF
ideally suited for online health monitoring and failure prog-
nosis at a remote location. This is extremely important, for
example, in a sensor network scenario, where both mem-
ory and processor time of local computers might be severely
constrained.

Further work is necessary before the SDF algorithm could
be incorporated in the instrumentation and control system
of an industrial process. From this perspective, theoretical
and experimental research is recommended in the following
areas:

(1) Enhancement of the wavelet-based space partitioning
through usage of alternative techniques (e.g., Hilbert-
transform-based space partitioning [32]).

(2) Impact of variations in input excitation functions by
taking advantage of symbolic-dynamics-based system
identification [33].

(3) Assessment of robustness under spurious disturbances
and (multiplicative) noise contamination.

(4) Implementation on a sensor network for real-time fault
detection.

Appendix A Common pattern recognition tools

This appendix briefly reviews the rudimentary principles of
commonly used pattern recognition tools that have been com-
pared with SDF in the main body of the paper.

A.1 Bayesian filters

Bayesian filters provide a framework for state estimation for
both linear and non-linear problems [9]. It is assumed that the
states evolve according to a generalized model and generate
discrete-time observations as:

xk+1 = f (xk, wk, uk); yk = g(xk, vk, uk) (11)

where xk is the state vector; yk is the observation vector;
uk is the deterministic input; vk is the observation noise;
and wk is the process noise. Given noisy observations, the
state estimation problem involves determining a probability
distribution for the system states, i.e., to determine p(xk |yk).
The following information is assumed to be available:

(1) Initial probability distribution of the states p(x0)

(2) Functional form of the probability density p(xk |yk)

(3) Probability distribution of the observation noise

Bayesian techniques largely follow a recursive predic-
tor/corrector determination of the probability density func-
tion (pdf). The predictor stage forms the estimate p(xk |yk−1)
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while the corrector stage uses the most current observation
and yields p(xk |yk). The recursive determination implies that
p(xk |yk) is constructed from p(xk−1|yk−1). In a non-Markov
setting, multiple observations generate the estimate, and con-
struct p(xk |Yk) where Yk represents all observations from
time 1 to k, i.e., Yk = y1:k . Generalized recursive Bayesian
state estimation is executed as:

p(xk |Yk) = p(yk |xk)p(xk |Yk−1)

p(yk |Yk−1)
(12)

where

p(xk |Yk−1) =
∫

p(xk |xk−1)p(xk−1|Yk−1)dxk−1 (13)

depends on the density function p(yk |xk) defined by mea-
surement model and the known statistics of vk . In the cor-
rector stage, the measurement yk is used to modify the prior
density to obtain the required posterior density of the current
state.

The recurrence relations in Eqs. (12) and (13) constitute a
formal solution to the Bayesian state estimation problem. In
general, these equations are not analytically solvable; hence,
numerical approximations are sought. Note that an analytic
solution exists for f and h being linear functions with addi-
tive white Gaussian noise v and w. This issue has been
addressed by numerical approaches that include Particle Fil-
tering and Sigma Point Kalman Filtering. These two methods
are succinctly described below.

Particle Filtering attempts to approximate each distrib-
ution using a series of particles, and updates the distribu-
tion at each step, depending on the observation. Sigma Point
Filtering makes a Gaussian assumption, and tries to model
how the mean and covariance travel through a non-linear
process using a series of points known as Sigma Points and
an Unscented Transform. Due to this, the process is also
known as UKF. The steps needed to solve the Bayesian state
estimation problem are succinctly described below.

A.1.1 Particle filter

The particle filter [9] is a commonly used model based
approach for anomaly detection. Two forms of the Particle
Filter have been investigated—sampling importance resam-
pling (SIR), and sampling importance sampling (SIS) [8].
Both algorithms involve generating a number of particles
according to an initial distribution, and then passing these
particles through an initial model of the system. After the
first observation, the particles are weighted according to their
Euclidean distance from the true observation. SIS and SIR
filters differ in the stage where the particles are resampled.

In SIR filtering, the particles are redistributed with particles
of greater weight being given higher probabilities. In SIS fil-
tering, the distribution is allowed to evolve without the effect
of these weights. The histogram of these particles represents
a multi-point approximation of the density function of the
physical process evolving with time, and the mean and con-
fidence intervals for the state estimates can be determined
from this distribution.

The particle filter algorithm is presented below.

(1) Initialize time at t = 0 and sample N particles
{

x(t)(i)
}N

i=1 from an initial distribution can be assumed
to be Gaussian.

(2) Generate N observations
{

y(t + 1)(i)
}N

i=1using the sys-
tem and observation model.

(3) Obtain the true observation y(t + 1) and compute
weights q(t)(i) = p(y(t)|x(t |t −1))(i) according to the
distribution of the measurement noise, and normalize

the weights: q̃(t) = q(t)(i)∑
q(t)(i)

(4) Resample the particles according to a new distribution
that is specified by the normalized importance weights:
Pr(x(t |t))(i) = Pr(x(t |t − 1)(i)) = q̃(t)(i)

(5) Generate a new set of updated particles according to the
distribution p(x(t + 1|t)|x(t |t)(i), y(t)).

(6) Increase t by 1 and repeat from step 2.

A.1.2 Unscented Kalman Filter

The UKF [10] takes a different approach from the extended
Kalman filter [7] in state estimation. In general, it is more
convenient to approximate a probability distribution than it
is to approximate an arbitrary nonlinear function or transfor-
mation. Following this argument, it is possible to generate a
set of points whose sample mean and sample covariance are
x̂k|k and Pk|k , respectively. The nonlinear function is applied
to each of these points in turn to yield a transformed sample,
and the predicted mean and covariance are calculated from
the transformed sample. The objective is to determine the
output distribution by passing a few deterministically cho-
sen points through the system, rather than a large number
of stochastically chosen particles. Although this approach
apparently resembles a Monte Carlo method, the samples
are not drawn at random. Rather, the samples are determinis-
tically chosen so that they capture specific information about
the distribution. The system provides a Gaussian assumption
of the output distribution, and hence is a form of a Kalman
filter. One point is chosen for the mean of the system, and
two points are chosen for calculating the variance in each
dimension. These points are known as Sigma Points, and
the principle involved is known as the Unscented Transform.
Given the dimension n of the state space of the process, the
equations for the UKF are presented below.
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(1) Initialize:

x̂0 = E[x0] (14a)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (14b)

(2) For k ∈ {1, 2, . . . ,∞}, calculate the sigma points

χk−1 =
[
x̂k−1 x̂k−1 ± √

(n + κ)Pk−1

]

Time update: χk|k−1 = f (χk−1, uk−1, k)

Predicted mean: χ̂k|k−1 = Wχk|k−1

Predicted covariance: Pk|k−1 = W.(χk|k−1 − x̂k|k−1)

where κ is the scale factor for output state dimension. This
is set to be 3 for a two-state system.

A.2 Neural network based methods

Neural Network based fault detection and isolation tech-
niques have been extensively investigated for last two
decades. Generally neural networks are used to create a
black-box model of the nominal system [34] to capture the
possible fault signature(s) in the system [35]. An adaptive
neural-network-based fault detection technique in nonlinear
systems is presented in [36]. Liu and Scherpen presented
a different fault detection technique for nonlinear systems
based on probabilistic neural network filtering [13]. This
paper investigates two different types of Neural Network
algorithms, namely MLPNN and RBFNN, for detection of
anomaly patterns.

A.2.1 Multi layer perceptron neural network

A MLPNN is one of the simplest implementations of the
back-propagation algorithm. It consists of a finite number of
hidden layers of interconnected neurons and an output layer.
The number of neurons in the output layer is same as the
number of outputs from the network. Multi Layer networks
typically use sigmoid transfer functions, such as the logarith-
mic and tangent sigmoid functions, in the hidden layers. In
the case of a neuron model with logarithmic sigmoid (LS)
transfer function, LS takes an input vector {pi } with associ-
ated weights vector {wi } for i = 1, 2 . . . n, then the output,
a from the neuron will be, a = L S

(∑n
i=1 wi pi + b

)
where

bias to the neuron is b.
Output layer generally uses linear transfer functions. Net-

works with biases, sigmoid hidden layers, and a linear output
layer are capable of approximating any function with a finite
number of discontinuities. Input vectors and targeted out-
put vectors are used to train the network until it estimates
the functional relation between the input and output up to a
required accuracy. The training starts with an initial guess
of weights and biases for each neuron. There are several
types of back-propagation training algorithm. In each case,

the network weights and biases are updated in the direction
where the performance function decreases most rapidly, i.e.,
in the direction of the negative of the gradient. Normally, the
performance function for feed-forward networks is the mean
square error (MSE), i.e., the average squared error between
the network outputs and the target outputs. For example, let
x j be the vector of weights and biases for one neuron layer,
g j be the gradient and α j be the learning rate after the j th

iteration. Then, the ( j + 1)th iterated value of the weights
and bias vector are: x j+1 = x j − α j g j .

Among different types of back-propagation algorithms,
gradient descent or gradient descent with momentum are
slow for certain problems [37]. In this paper, a relatively
fast resilient back-propagation algorithm has been chosen,
which uses only the sign of the gradient to determine the
direction of the weight update. The advantage is that if the
magnitude of the gradient becomes very small, the updating
process continues in the correct direction until the weights
and biases reach their optimal values [38].

A.2.2 Radial basis function neural network

A RBFNN uses only one hidden layer and one output layer.
It may require more number of neurons for the hidden layer
compared to that required by a standard feed-forward net-
work. However, it usually takes less time for training. Linear
transfer function is used in the output layer and Radial Basis
Function is used for the hidden layer. The transfer function
for radial basis neuron is [14]: f (x) = e−x2

. In this neural
network algorithm the input to the radial basis transfer func-
tion is the vector distance between its weight vector w and the
input vector p, multiplied by the bias b, i.e x = d(w, p)× p.
Sufficient number of neurons are added in the hidden layer
to bring the sum-squared error below a threshold.

A.3 Statistical pattern recognition techniques

There are many statistical pattern recognition techniques, of
which two most common methods, namely, PCA and KRA,
have been investigated in this paper.

A.3.1 Principal component analysis

Principal component analysis, also known as proper orthog-
onal decomposition, is commonly used to reduce the dimen-
sionality of a data set with a large number of interdependent
variables [15]; PCA is the optimal linear transformation with
respect to minimizing the mean square reconstruction error
but it only considers second-order statistics [39].

Given a set of observed n-dimensional data points
{x1, x2 . . . xn}, the goal of PC A is to reduce the dimension-
ality of the observed vector x . This is realized by finding
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m principal axes
{
(p)1, (p)2 . . . (p)m

}
onto which the

retained variance under projection is maximal.
The best known linear feature extraction technique, PCA

that makes use of Karhunen–Loéve transformation [39] to
compute the m largest eigenvectors of the covariance matrix
of the N patterns, each of which is m-dimensional. Since
PC A uses the most expressive features (eigenvectors with
the largest eigenvalues), it effectively approximates the data
on a linear subspace using the mean squared error criterion.

A.3.2 Kernel regression analysis

Kernel regression method has been used to estimate the
posteriori density function of measurements and is proven to
be superior to histogram density appraisers [40]. The kernel
estimators are unbiased and smooth functions which are dif-
ferentiable. Kernel functions are also used in conjunction
with neural networks [40] and principal component analysis
[15] in various fault detection and isolation applications.

A function K (x) : R
d → R is called a kernel function if

K (x) is limited and Borel measurable , i.e., if for |x | → ∞,
the following relation holds:

∣∣
∣∣∣∣∣

∫

Rd

K (x)

∣∣
∣∣∣∣∣
< ∞ (15)

K is called normalized kernel function if it is unimodal, sym-
metric and nonnegative, i.e., K (x) ≥ 0 ∀x ∈ R

d and if the
condition

∫
Rd K (x)dx = 1 holds. Therefore, a normalized

kernel function has the necessary properties of a density func-
tion. Common kernel functions are the Boxcar, Cosine and
Gaussian functions.

Let {x1, . . . xn} be sampled from a distribution with den-
sity f : R

d → R and K (x) be a normalized kernel function.
The univariate kernel estimator for the density f (x) is defined
as:

f̂ (x) = 1

Nh

N∑

i=1

K

(
x − xi

h

)
(16)

where h is called the window width or smoothing parameter
and plays a similar role to the bin width in the case of a
histogram.

As new data enters into the anomaly detection system, it is
compared with the kernel regression of the density function
of the nominal data. If it falls within the boundaries defined
by the kernel estimator model, then it is considered as a nom-
inal data; otherwise, the data is considered as faulty. A key
requirement for kernel regression technique is appropriate
selection of the kernel function and the order of the statistics
of the model. From this perspective, a kernel function for

fault detection is chosen as:

K (x) = exp

(

− 1

θα

∑

i

|xi − µ|α
)

∀x ∈ R (17)

where the parameter α ∈ (0,∞); and µ and θα) are the mean
and αth central moment of the data set, respectively.
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