EXAMPLE 3–9 A Gravity-Controlled Cylindrical Gate

A long solid cylinder of radius 0.8 m hinged at point A is used as an automatic gate, as shown in Fig. 3-38. When the water level reaches 5 m, the gate opens by turning about the hinge at point A. Determine (a) the hydrostatic force acting on the cylinder and its line of action when the gate opens and (b) the weight of the cylinder per m length of the cylinder.

SOLUTION The height of a water reservoir is controlled by a cylindrical gate hinged to the reservoir. The hydrostatic force on the cylinder and the weight of the cylinder per m length are to be determined.

Assumptions 1 Friction at the hinge is negligible. 2 Atmospheric pressure acts on both sides of the gate, and thus it cancels out.

Properties We take the density of water to be 1000 kg/m³ throughout.

Analysis (a) We consider the free-body diagram of the liquid block enclosed by the circular surface of the cylinder and its vertical and horizontal projections. The hydrostatic forces acting on the vertical and horizontal plane surfaces as well as the weight of the liquid block are determined as...
The centroid of the projected horizontal surface is located at a depth of h_{bottom} from the water surface. (P is constant along this surface since it is at a constant depth.)

$$F_H = F_x = P_{\text{ave}}A = \rho gh_{\text{C}}A = \rho g(s + R/2)A$$
$$= (1000 \text{ kg/m}^3)(9.81 \text{ m/s}^2)(4.2 + 0.8/2 \text{ m})(0.8 \text{ m} \times 1 \text{ m})\left(\frac{1 \text{ kN}}{1000 \text{ kg} \cdot \text{m/s}^2}\right)$$
$$= 36.1 \text{ kN}$$

Vertical force on horizontal surface (upward):

$$F_y = P_{\text{ave}}A = \rho gh_{\text{bottom}}A$$
$$= (1000 \text{ kg/m}^3)(9.81 \text{ m/s}^2)(5 \text{ m})(0.8 \text{ m} \times 1 \text{ m})\left(\frac{1 \text{ kN}}{1000 \text{ kg} \cdot \text{m/s}^2}\right)$$
$$= 39.2 \text{ kN}$$

Weight of fluid block per m length (downward):

$$W = mg = \rho gV = \rho g(R^2 - \pi R^2/4)(1 \text{ m})$$
$$= (1000 \text{ kg/m}^3)(9.81 \text{ m/s}^2)(0.8 \text{ m})^2(1 - \pi/4)(1 \text{ m})\left(\frac{1 \text{ kN}}{1000 \text{ kg} \cdot \text{m/s}^2}\right)$$
$$= 1.3 \text{ kN}$$

We subtract weight W since the shaded volume is below the curved surface.

Therefore, the net upward vertical force is

$$F_V = F_y - W = 39.2 - 1.3 = 37.9 \text{ kN}$$

Then the magnitude and direction of the hydrostatic force acting on the cylindrical surface become

$$F_R = \sqrt{F_H^2 + F_V^2} = \sqrt{36.1^2 + 37.9^2} = 52.3 \text{ kN}$$
$$\tan \theta = \frac{F_V}{F_H} = \frac{37.9}{36.1} = 1.05 \rightarrow \theta = 46.4^\circ$$

Therefore, the magnitude of the hydrostatic force acting on the cylinder is 52.3 kN per m length of the cylinder, and its line of action passes through the center of the cylinder making an angle 46.4° with the horizontal.

It turns out that for cylindrical surfaces (a circular arc shape), the resultant hydrostatic force acting on the surface always passes through the center of the circular arc.
We take the moment about point A, using counterclockwise as positive. As shown in the sketch to the right, there are only two moments acting about point A: (1) the weight of the cylinder times its moment arm, which is the radius of the cylinder, and (2) the net hydrostatic force acting on the portion of the cylinder that is in contact with the water times its moment arm. Its force is F_R and its moment arm is $R \sin \theta$ which is the perpendicular distance from A to the line of action of the force.

Discussion The weight of the cylinder per m length is determined to be 37.9 kN. It can be shown that this corresponds to a mass of 3863 kg per m length and to a density of 1921 kg/m^3 for the material of the cylinder.