The notion of cardinality of a set Ω, denoted as $\text{card}(\Omega)$, is related to the number of elements in Ω. If Ω has finitely many (say n) elements, then $\text{card}(\Omega)=n$. However, the concept is not straightforward for infinite sets.

We will consider the following three cases for two sets X and Y (regardless of whether they are finite or infinite):

$\text{card}(X)=\text{card}(Y)$; $\text{card}(X) \leq \text{card}(Y)$; $\text{card}(X)<\text{card}(Y)$.

Definition A3-1: Let X and Y be two nonempty sets. Then,

- $\text{card}(X)=\text{card}(Y)$ if there exists a bijective mapping between X and Y.
- $\text{card}(X) \leq \text{card}(Y)$ if there exists an injective mapping from X into Y.
- $\text{card}(X)<\text{card}(Y)$ if every injective mapping from X into Y is NOT onto, i.e., its range is a strictly proper subset of Y.

Theorem A3-1: Let X and Y be two sets. If $\text{card}(X) \leq \text{card}(Y)$ and $\text{card}(Y) \leq \text{card}(X)$, then $\text{card}(X)=\text{card}(Y)$.

Proof: It is obvious from Definition A3-1. \blacksquare

Definition A3-2: A set is called *countable* if there exists a bijective mapping between X and the set, $\mathbb{N} = \{1,2,3,\cdots\}$, of natural numbers. A set which is either finite or countable is called *at most countable*. An infinite set which is not countable is called *uncountable*.

Remark A3-1: $\text{card}(\text{a finite set}) \leq \text{card}(\text{an at most countable set}) \leq \text{card}(\text{a countable set})=\text{card}(\text{another countable set}) < \text{card}(\text{an uncountable set})$.

Remark A3-2: $\text{card}(\emptyset)=0$.

Remark A3-3: The set, \mathbb{J}, of all integers and the set, \mathbb{N}, of all positive integers belong to the same class of cardinality even though \mathbb{N} is a proper subset of \mathbb{J}. This fact may appear to be counter-intuitive from the perspective of finite sets.

Example A3-1: To show that the set, \mathbb{J}, of all integers is countable, i.e., $\text{card}(\mathbb{Z})=\text{card}(\mathbb{N})$, we find a bijective mapping $f : \mathbb{N} \to \mathbb{J}$ as follows:

$$f(n) = \begin{cases} \frac{n}{2} & \text{for } n \text{ even} \\ -\frac{n-1}{2} & \text{for } n \text{ odd} \end{cases}$$

Similarly, to show that the set, $\mathbb{Z} = \{0,1,2,\cdots\}$ of non-negative integers is countable, i.e., $\text{card}(\mathbb{Z})=\text{card}(\mathbb{N})$, we find a bijective mapping $f : \mathbb{N} \to \mathbb{Z}$ as follows:

$$f(n) = n-1.$$

Theorem A3-2: Let A be a countable set and B_n be the set of all n-tuples (a_1,a_2,\cdots,a_n) where $a_k \in A$. Then, B_n is countable.

Proof: For $n=1$, $B_1 = A$ is countable. Suppose B_{n-1} is countable for some $n>1$. Then, the elements of B_n are of the form (b,a) where $b \in B_{n-1}$ and $a \in A$. For every fixed b, the set of pairs (b,a) bears an equivalence relation
with \(A\), and hence is countable. Therefore, \(B_n\) is the union of a countable set of countable sets. By Theorem A3-2, \(B_n\) is countable. Now, the proof is completed by induction.

Corollary to Theorem A3-2: The set, \(Q = \{\frac{m}{n} : m \in J; n \in J - \{0\}\}\) of rational numbers is countable.

Theorem A3-3: Let \(\{s_i\}\) be a sequence of countable sets, i.e., \(s_i\) is a countable set for every \(i = 1, 2, 3, \ldots\). Then, a countable union of \(s_i\)'s is also a countable set.

Proof: See Rudin (p. 29).

Theorem A3-4: The set \((0,1) = \{x : 0 < x < 1\} \subset \mathbb{R} = (-\infty, \infty)\) is uncountable.

Proof: Let us assume that the set \((0,1)\) is countable, i.e., \((0,1) \sim N\). That is, we assume the existence of a bijective mapping between the sets \((0,1)\) and \(N\), in which every \(x_i \in (0,1)\) corresponds to a unique \(i \in N\). Let us consider a real number \(x_i \in (0,1)\) that is written as \(0.\delta_1\delta_2\delta_3\delta_4\ldots\) where \(0 \leq \delta_i \leq 9\) is an integer. We define \(\tilde{\delta}_i = 9 - \delta_i\) so that \(0 \leq \tilde{\delta}_i \leq 9\). Consider the real number \(y = 0.\tilde{\delta}_1\tilde{\delta}_2\tilde{\delta}_3\tilde{\delta}_4\ldots\) that certainly belongs to the set \((0,1)\). Since \(y\) must differ from any of the \(x_i\)'s defined above, the bijective mapping from \(N\) onto \((0,1)\) is impossible. Therefore, the above assumption that the set \((0,1)\) is countable is false.

Remark A3-4: The sets \(N\) and \(\mathbb{R}\) belong to the different classes of cardinality.

Remark A3-5: The sets \((0,1)\) and \(\mathbb{R}\) have the same cardinality. This will be clear after we study the topological spaces. We will show that \((0,1)\) and \(\mathbb{R}\) are homeomorphic under the usual topology. Loosely speaking, this means that the sets \((0,1)\) and \(\mathbb{R}\) are indistinguishable from the topological perspectives. Candidate mappings are: \(f: (0,1) \rightarrow (-\infty, \infty)\) with \(f(x) = \tan^{-1}\left(\frac{x - \frac{1}{2}}{1}\right)\) and \(f(x) = \frac{2x - 1}{x(x - 1)}\), which are both bijective and bicontinuous. Therefore, \(f\) is a homeomorphism. Let us look at the picture from a geometric point of view in the diagram below.

Represent \(\mathbb{R}\) by an infinite straight line axis on which each point represents a unique real number. Now draw the following figure after bending the line segment \((0,1)\) into a semicircle. If the lines are drawn from the center of the semicircle intersecting both the semicircle and the infinite straight line axis, the points of intersection can be paired as a bijection from \((0,1)\) onto \(\mathbb{R}\).

Zorn’s Lemma

Definition A3-3: A relation \(\leq\) on a nonempty set \(S\) is said to be a partial ordering if

- \(x \leq x\) \(\forall x \in S\)
- \((x \leq y\text{ and } y \leq x) \Rightarrow x = y\) \(\forall x, y \in S\)
- \((x \leq y\text{ and } y \leq z) \Rightarrow x \leq z\) \(\forall x, y, z \in S\)

A set \(S\) is said to be partially ordered if \(S\) has a defined partial ordering.

Definition A3-4: A partial ordering \(\leq\) on a nonempty set \(S\) is said to be a total ordering if, in addition,

- either \(x \leq y\) or \(y \leq x\) \(\text{ for any two points } x, y \in S\)
A set S is said to be totally ordered if S has a defined total ordering.

Definition A3-5: Let \leq be a partial ordering on a nonempty set S and let $A \subseteq S$ be nonempty. Then, the set A is said to be a chain if A is totally ordered, i.e., either $x \leq y$ or $y \leq x$ for any two points $x, y \in A$.

Definition A3-6: Let \leq be a partial ordering on a nonempty set S and let $A \subseteq S$ be nonempty. Then, $\tilde{a} \in S$ is said to be an upper bound of A if $y \leq \tilde{a} \quad \forall y \in A$. Furthermore, if $\tilde{a} \in A$, then \tilde{a} is a maximal element of A.

Remark A3-6: A chain is a restriction of a partial ordering that yields a total ordering.

Example A3-2: The collection \mathcal{P} of all open subsets of $\mathbb{R} \times \mathbb{R}$ is partially ordered but not totally ordered.

Example A3-3: The collection \mathcal{T} of all open disks in $\mathbb{R} \times \mathbb{R}$ is totally ordered. Furthermore, $\mathcal{T} \subseteq \mathcal{P}$ is a maximally totally ordered set, i.e., if any member of \mathcal{P} which is not in \mathcal{T} is adjoined with \mathcal{T}, then the resulting collection of sets is no longer totally ordered by \subseteq.

Theorem A3-5 (Zorn’s Lemma): If every chain in a partially ordered set S has an upper bound, then S has a maximal element.

Remark A3-7: Zorn’s Lemma can be interpreted as follows: In a nonempty set c with partial ordering \leq, let every chain $U \subseteq S$ have an upper bound, i.e., $\exists x \in S$ s.t. $x \geq \alpha \quad \forall \alpha \in U$. Then, S has a maximal element. (Equivalent to Zorn’s Lemma.)

Theorem A3-7 (Axiom of Choice): Let I be an index set for a partially ordered set S and \exists a nonempty $S_\alpha \subseteq S \quad \forall \alpha \in I$. Let Σ be collection of all such functions S_α. Then, one can define a function $\vartheta : I \rightarrow \Sigma$.

Theorem A3-6 (Hausdorff Maximality Theorem): Every partially ordered set contains a maximally totally ordered set. (Equivalent to Zorn’s Lemma.)

HW#A3-1: Show that, given real numbers a and b, $\{x^2 + ax + b \geq 0 \text{ for all } x \in \mathbb{R}\} \Leftrightarrow \{a^2 - b \leq 0\}$.

HW#A3-2: Show that $\sqrt{3}$ is irrational.

HW#A3-3: Let $x \in \mathbb{R}$; $f(x) = x$; and $g(x) = e^x$. Show that $f(0) < g(0)$ and $f'(x) < g'(x)$ $\forall x > 0$. Now show that $x \geq 0 \Rightarrow x < e^x$.

HW#A3-4: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ for $n \in \mathbb{N}$. Then, evaluate $\sum_{k=1}^{n} k^2$ and $\sum_{k=1}^{n} k^3$. Use different methods for proof.

HW#A3-5: Show that, given $h \in (0, \infty)$, show that $(1 + h)^n > (1 + nh) \quad \forall n \in \mathbb{N} - \{0\}$.

HW#A3-6: Show that a total ordering on a set is an equivalence relation. Is the converse true?