Today, we will:

- Discuss **half-life** in first-order dynamic systems
- Talk about first-order dynamic systems with a **ramp function input**
- Finish reviewing the pdf module: **Dynamic System Response (2nd-order systems)**
- Do some more example problems – dynamic system response

Definition of half-life: *Half-life* is the time required for a variable to go half-way from its present value to its final value. Half-life can also be thought of as the 50% response time.
Example: Dynamic system response (first-order and half-life)

Given: Output variable y responds like a first-order dynamic system when exposed to a sudden change of input variable x. The half-life of the system is 2.00 s. When x is suddenly increased, y grows from an initial value of 100 to a final value of 132.

To do: Calculate the time (in seconds) required for y to reach a value of 124.

Solution:

![Graph showing the response of y over time]
Example: Dynamic system response (second-order)

Given: The following second-order ODE:

\[5\ddt^2 y + \dt y + 1000y = x(t) \]

(1)

The forcing function is a step function (sudden jump):

\[x(t) = 0 \] for \(t < 0 \)

\[x(t) = 25 \] for \(t > 0 \)

(a) To do: Calculate the natural frequency and damping ratio of this system.

(b) To do: Calculate the equilibrium response (as \(t \to \infty \), what is \(y \)?).

Solution:
Example: Dynamic system response

Given: A spring-mass-damper system is set up with the following properties: mass $m = 22.8$ g, spring constant $k = 51.6$ N/cm, and damping coefficient $c = 3.49$ N·s/m (c is also called λ in some textbooks). The forcing function is a step function (sudden jump).

To do:

(a) Calculate the damping ratio of this system. Will it oscillate?

(b) If the system will oscillate, calculate the oscillation frequency in hertz. [*Note: Calculate the physical frequency, not the radian frequency.*] Compare the actual oscillation frequency to the undamped natural frequency of the system.

Solution: