Today, we will:
- Do some example problems with Lapple reverse flow cyclones
- Discuss how cyclone performance varies with size, flow rate, etc.
- Discuss particle collectors in series and parallel

Example: Lapple Cyclone

Given: A standard reverse flow Lapple cyclone is used to clean up a dusty air flow exhausted by a sanding machine in a wood shop. The main body diameter of the cyclone is \(D_2 = 45.0 \) cm (0.450 m).
- particle density \(\rho_p = 730 \text{ kg/m}^3 \)
- bulk volume flow rate of air \(Q = 0.55 \text{ m}^3/\text{s} \)
- Air is at STP: \(\rho = 1.184 \text{ kg/m}^3, \mu = 1.849 \times 10^{-5} \text{ kg/(m s)} \).

To do: Calculate the grade efficiency \(\eta(D_p) \) for 10-\(\mu \)m particles. Give your answer as a percentage to 3 significant digits.

Solution: Some equations:

\[
D_{p,\text{cut}} = \sqrt[3]{\frac{3\mu D_2^3}{128\pi Q(\rho_p - \rho)}}
\]

\[
\eta(D_p) = \frac{1}{1 + \left(\frac{D_p}{D_{p,\text{cut}}}\right)^2}
\]

For \(D_{p,\text{cut}} \) (where \(\eta(D_{p,\text{cut}}) = 50\% \)):

\[
D_{p,\text{cut}} = \sqrt[3]{\frac{3\times1.849 \times 10^{-5} \times 0.450^3}{128\pi \times 0.55 \times (730 - 1.184)}} = 5.6 \times 10^{-6} \text{ m} = 5.6 \mu\text{m}
\]

At \(D_p = 10 \mu\text{m} \):

\[
\eta(10 \mu\text{m}) = \frac{1}{1 + \left(\frac{10 \mu\text{m}}{5.6 \mu\text{m}}\right)^2} = 76.1\%
\]

I repeated for a range of \(D_p \):

grade efficiency curve \(\eta(D_p) \) vs \(D_p \).
Q: What if we increase Q?
 - N \uparrow, U_0 \uparrow
 - A: U_0 \uparrow, accel. $\frac{U_0^2}{2}$ \uparrow

A: Smaller D_{cut} "better"

Q: Why is this not always the best solution? (increase Q)
A: Pressure drop goes way up as Q \uparrow

$\Delta P \propto Q^2$

$\Delta P = 40.96 \rho \left(\frac{Q}{Wh}\right)^2$

$W_{fan} = \text{power to run this cyclone}$

$W_{fan} \propto Q^3$ \(\Rightarrow\) higher Q costs a lot more to operate

$W_{fan} = (\frac{1}{\eta_{blower}}) \Delta P$
What happens if cyclone is larger or smaller?

For a given U_b, if $r_m \uparrow$, $\text{Accel} \uparrow$

"better" performance if r_m is smaller

But, $\Delta \tau \propto (\frac{Q}{WH})^2$

eg. if W, H both decrease by a factor of 2

$\Delta \tau \uparrow$ by factor of $4^2 = 16$

$W_{fan} \propto \Delta \tau \Delta P$

$W_{fan} \uparrow$ by a factor of 16

@ same Q
Example: Design of a Lapple Cyclone

Given: Dusty air from a manufacturing plant needs to be cleaned before being exhausted to the environment. Here is what we know about the dusty air:
- the air is polydisperse, with a wide variety of particle sizes
- particle density $\rho_p = 1500 \text{ kg/m}^3$
- bulk volume flow rate of air $Q = 0.111 \text{ m}^3/\text{s}$
- the air is at STP: $\rho = 1.184 \text{ kg/m}^3, \mu = 1.849 \times 10^{-5} \text{ kg/(m s)}$

To do: Design a standard reverse flow Lapple cyclone to clean the air such that the removal efficiency of 2.5-μm particles is 80%. In particular, calculate dimension D_2, the diameter of the Lapple cyclone canister. Give your answer in meters to 3 significant digits.

Solution: Some equations:

\[
D_{p,cut} = \frac{3\mu D_2^3}{128\pi Q(\rho_p - \rho)}
\]

\[
\eta(D_p) = \frac{1}{1 + \left(\frac{D_p}{D_{p,cut}}\right)^2}
\]

1. **Equation for $D_{p,cut}$**

\[
D_{p,cut} = D_p \sqrt{\frac{1-\eta}{\eta}}
\]

2. **Equation for D_2**

\[
D_2 = \sqrt[3]{\frac{D_{p,cut}^2}{128\pi Q(\rho_p - \rho)} \frac{128\pi Q(\rho_p - \rho)}{3\mu}}
\]

How much dust will the cyclone remove in a year?

Assume $\eta_{\text{blow}} = 75\%$
Power required = \(\dot{W}_{\text{blower}} = \frac{1}{\eta_{\text{blower}}} \frac{Q \Delta P}{\dot{V}} \)

For Lapple, we know \(W = \frac{D_2}{y} \)

\(H = \frac{D_2}{2} \)

\(\dot{W}_{\text{blower}} = 2621.44 \ \text{W} \)

For air:

\[
\dot{W}_{\text{blower}} = 2621.44 \left(1.184 \ \frac{\text{kJ}}{\text{m}^3} \right) \frac{1}{0.75} \left(0.111 \ \frac{\text{m}^3}{\text{s}} \right)^3 \left(\frac{\text{N} \cdot \text{m}^2}{\text{kJ} \cdot \text{m}} \right) \left(\frac{\text{W} \cdot \text{s}}{\text{N} \cdot \text{m}} \right)
\]

\(= 24313.7 \ \text{W} \)

\(\dot{W}_{\text{blower}} = 24.3 \ \text{kW} \)

@ \(10^4 \text{$/kW \cdot hr$} \) per yr ->

\[
\text{Cost} = \left(\frac{3600}{\text{kW \cdot hr}} \right) (24.3 \text{ kW}) (365.25 \text{ day}) \left(\frac{24 \text{ hr}}{\text{day}} \right) = 21,300 \ \text{per year}
\]

Let's try same problem, but with 4 cyclings in parallel
Same \(Q \) small, but \(Q = 0.111 \text{ m}^3/\text{s} \),

\[\div 4 \text{ here, } Q \text{ per unit } = 0.02775 \text{ m}^3/\text{s} \]

Keep efficiency requirement the same — 80% \(e \) \(D_p = 2.5 \text{ \mu m} \)

\[\text{redo calculation } \rightarrow D_2 = 0.0778 \text{ m} \]

This will have same performance
\[W_{\text{blower per unit}} = 2621.44 \left(\frac{1}{n_{\text{blower}}} \right) \frac{Q^3}{D^4} \]
\[= 2621.44 \left(\frac{1}{0.75} \right) \frac{(0.0277)^3}{(0.07781)^4} \]
\[= 2412.3 \, \text{W} = 2.412 \, \text{kW} \]
for one unit

So total power = \(4 \times 2.412 \, \text{kW} \)

Total cost = \$8460 per yr

compares to \$21,700 \ldots \ldots \!

For the same performance!

We often see cyclones in parallel!
We see cyclones in parallel in many applications.

Why:
1) Reduce operating cost for same N
2) Can get better N for same operating cost
Example: Lapple Cyclones in Series and Parallel

Given: Dusty air is cleaned by one large Lapple cyclone in series with four smaller Lapple cyclones in parallel. Details:
- particle density \(\rho_p = 1500 \, \text{kg/m}^3 \)
- bulk flow rate of air \(Q = 0.111 \, \text{m}^3/\text{s} \)
- air at STP: \(\rho = 1.184 \, \text{kg/m}^3, \mu = 1.849 \times 10^{-5} \, \text{kg/(m s)} \)
- \(D_{p,\text{cut,1}} = 10 \, \text{microns}; \) \(D_{p,\text{cut,2}} = 2.5 \, \text{microns} \)

To do: Calculate the overall removal efficiency of 2.0-\(\mu \)m particles. Give your answer in percentage to 3 significant digits. Some equations are provided here for convenience.

Parallel:
\[
\eta(D_p)_{\text{overall}} = 1 - \sum_{j=1}^{m} f_j \left[1 - \eta(D_p)_j\right], \quad f_j = \frac{Q_j}{Q_{\text{total}}}
\]

Lapple:
\[
\eta(D_p) = \frac{1}{1 + \left(\frac{D_p}{D_{p,\text{cut}}}
ight)^2}
\]

Series:
\[
\eta(D_p)_{\text{overall}} = 1 - \prod_{j=1}^{m} \left[1 - \eta(D_p)_j\right]
\]

Solution:

Same eqn for series + parallel is generally true for any \(D_{p,\text{cut}} \) but now they are grade efficiency \(\eta = \eta(D_p) \)

For unit:

\[
\begin{align*}
\eta_1(D_p) &= \frac{1}{1 + \left(\frac{2}{10}\right)^2} \\
&= 0.3846 \\
\eta_2(D_p) &= 0.3902
\end{align*}
\]

Overall:
\[
\eta(D_p)_{\text{overall}} = 1 - (1 - \eta_1(D_p))(1 - \eta_2(D_p)) = 41.4 \%
\]
Repeat for range of D_p

Grade Efficiency

41% @ 2 μm

Notice: Cleaner 2 does most of the cleaning! (it has a much smaller D_p cut)