Scaling and RG for spin systems

There is a deep connection between the statistical mechanics of spin chains and dynamical processes of certain kinds. Here we discuss the behavior at or near phase transitions.

We will find:

- universality
- self similarity (at the critical point)
- non-trivial power-laws (analogous to dimensions)
Exponents not quite correct
Exponents deficiencies
Exponents too universal; all not dependent on η
Exponents sufficient for many purposes

Given power-law behaviors

Success
Gives phase transitions

* from liquid-gas transition

<table>
<thead>
<tr>
<th>η</th>
<th>T</th>
<th>β</th>
<th>ν</th>
<th>M_F</th>
<th>Ising 2D</th>
<th>Ising 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.23-1.25$</td>
<td>1.2</td>
<td>0.325</td>
<td>4.82</td>
<td>$0.316-0.327$</td>
<td>$15-1.325$</td>
<td></td>
</tr>
<tr>
<td>$4.6-4.9$</td>
<td>1.8</td>
<td>$\frac{8}{3}$</td>
<td>1.24</td>
<td>$\frac{7}{4}$</td>
<td>$\frac{15}{3}$</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>Ising 2D</td>
<td>Ising 3D</td>
<td></td>
</tr>
</tbody>
</table>

How good is MFT?
Scaling

Two observable quantities depend on each other in a power law fashion. Often the exponent can be determined by dimensional analysis.

Dynamical situation:
- Acceleration \(\frac{d^2r}{dt^2} = \text{const} \Rightarrow r(t) \sim t^{1/2} \)
- Diffusion \(\nabla^2 \Theta \sim \frac{\partial \Theta}{\partial t} \Rightarrow r(t) \sim t^{1/2} \)
- Kepler's law \(\frac{d^2r}{dt^2} \sim \frac{1}{r^2} \Rightarrow r(t) \sim t^2 \)

Exponents reveal the nature of dynamics.

Static mass \(\sim \{ \begin{array}{c} \text{line} \\ \text{surface} \\ \text{volume} \end{array} \) \)

Random walk: Each step a, after N steps \(r \sim a N^{1/2} \)

(weight \(\sim N \sim r^2 \))

Exponents are rational fractions?
Anomalous scaling
Exponents cannot always be
determined by dimensional analysis
and don't have to be simple.

Sierpinski gasket

How does mass scale with R?

Suppose $M \sim R^x$

$R \rightarrow 2R$, $M \rightarrow 3M$

$M(2R) = \frac{(2R)^x}{M(R)} = 2^x = 3$

$\Rightarrow x = \frac{\ln 3}{\ln 2} = 1.588 \ldots$

- The object is self-similar.
 Self similarity and scaling go hand in hand.

Self-avoiding random walk

$R \sim N 0.588 \pm 0.001$

From exp's in dilute polymer solns

$R \sim N 0.586 \pm 0.004$
Scaling relations between exponents

\[m \propto t^\beta \quad \chi \propto t^{-\gamma} \quad h \propto m^\delta \]

Not all three exponents are independent, however.

\[\beta \delta = \beta + \gamma \]

 guessed from numerical

<table>
<thead>
<tr>
<th>Theory</th>
<th>(\beta)</th>
<th>(\delta)</th>
<th>(\gamma)</th>
<th>(\beta \delta)</th>
<th>(\beta + \delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean field</td>
<td>1/2</td>
<td>3</td>
<td>1</td>
<td>3/2</td>
<td>3/2</td>
</tr>
<tr>
<td>exp+</td>
<td>0.316-0.327</td>
<td>4.6-4.9</td>
<td>1.23-1.25</td>
<td>~1.5</td>
<td>~1.5</td>
</tr>
<tr>
<td>Ising 2D</td>
<td>1/8</td>
<td>15</td>
<td>7/4</td>
<td>15/8</td>
<td>15/8</td>
</tr>
<tr>
<td>Ising 3D</td>
<td>0.325</td>
<td>4.62</td>
<td>1.24</td>
<td>1.567</td>
<td>1.567</td>
</tr>
</tbody>
</table>

(There are other exponents and more scaling relations, which will not be discussed here.)
Scaling hypothesis (Widom)

Eq'n of state

Weiss theory \[m = F(h,t) \]

(here \(h = \frac{H}{T} \))

\[
\begin{align*}
\text{Exp.} & \quad m(t, h=0) = \begin{cases}
0, & t > 0 \\
\pm A |t|^\beta, & t < 0
\end{cases} \\
m(t=0, h) = \pm B |h|^{1/\xi}
\end{align*}
\]

Widom postulated

\[
\frac{M}{|t|^\beta} = F^+ \left(\frac{h}{|t|^\Delta} \right), \quad + \text{ for } t > 0
\]

\[
\frac{M}{|t|^\beta} = F^- \left(\frac{h}{|t|^\Delta} \right), \quad - \text{ for } t < 0
\]

Valid for \(|h|, |t| < 1\), but \(\frac{h}{t} \) can be anything.

Data collapse!

Only two curves!
• The values of T_c, Δ, β are not known a priori - must be fitted.

• They are obtained by achieving data collapse.

• Thus, even though m and t seem natural to us, nature chooses $\frac{m}{|t|^\beta}$ and $\frac{\hbar}{|t|^\Delta}$ as the natural variables.

• Scaling is nothing more than deciding what to plot against what!
Derivation of scaling relations

(i) \(m(t, h) = -m(t, -h) \)
\[\Rightarrow |t|^\beta F^\pm\left(\frac{h}{|t|\Delta}\right) = -|t|^\beta F^\pm\left(-\frac{h}{|t|\Delta}\right) \]
\[\Rightarrow F^\pm(x) = -F^\pm(-x) \]
Scaling \(F \) is an odd fun.

(ii) \(m(t, h) = |t|^\beta F^\pm\left(\frac{h}{|t|\Delta}\right) \)
For \(h=0 \) \(m(t) = |t|^\beta F^\pm(0) \)
\[\Rightarrow F^+(0) = 0, F^-(0) = \text{non-zero constant} \]
\(\beta \) has the standard meaning.

(iii) \(\chi \bigg|_{h=0} = \frac{2m}{\partial h} \bigg|_{h=0} = |t|^{\beta-\Delta} F^\pm(0) \)
Assume \(F^\pm(0) \neq 0 \)
\[\Rightarrow \beta - \Delta = -\gamma \Rightarrow \Delta = \beta + \gamma \]

(iv) What happens for \(t=0 \)?
Assume \(F^\pm(x) \sim x^\lambda \) as \(x \to \infty \).
\(m(0, h) \sim |t|^\beta \left(\frac{h}{|t|\Delta}\right)^\lambda = |t|^{\beta-\Delta} h^\lambda \)
\[m(0,h) = |t|^{\beta - \Delta \lambda} h \]

For \(\beta - \Delta \lambda \), \(t \to 1 \), \(m(0,h) \to 0 \). Not acceptable

\[\Rightarrow \beta = \Delta \lambda \]

\[\Rightarrow m(0,h) \sim h = h^{\frac{\beta}{\Delta}} = h \]

\[\Rightarrow \frac{\beta}{\Delta} = \frac{1}{S} \Rightarrow \Delta = \beta S \]

Combine with \(\Delta = \beta + \gamma \)

\[\Rightarrow \beta S = \beta + \gamma \text{ non-trivial relation} \]

Does it work?

<table>
<thead>
<tr>
<th>Theory</th>
<th>(\beta)</th>
<th>(S)</th>
<th>(\gamma)</th>
<th>(\beta S)</th>
<th>(\beta + \gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean field</td>
<td>(\frac{1}{2})</td>
<td>3</td>
<td>1</td>
<td>(\frac{3}{2})</td>
<td>(\frac{3}{2})</td>
</tr>
<tr>
<td>Expt</td>
<td>0.316-0.327</td>
<td>4.6-4.9</td>
<td>1.23-1.25</td>
<td>~1.5</td>
<td>~1.55</td>
</tr>
<tr>
<td>Ising 2D</td>
<td>(\frac{1}{8})</td>
<td>15-</td>
<td>7/4</td>
<td>15/8</td>
<td>15/8</td>
</tr>
<tr>
<td>Ising 3D</td>
<td>0.325</td>
<td>4.82</td>
<td>1.24</td>
<td>1.567</td>
<td>1.567</td>
</tr>
</tbody>
</table>
Scaling hypothesis for free energy:

More general.

Generally

\[f_s(t, h, g_1, g_2, \ldots) = (t \vert \Delta \vert^h, \frac{g_1}{t \vert \Delta \vert}, \frac{g_2}{t \vert \Delta \vert}, \ldots) \]

\[\downarrow \text{singular part} \]

For now

\[f_s(t, h) = (t \vert \Delta \vert^h) \]

\(\Delta \) is the specific heat exponent.

\[C_v \sim \frac{\partial^2 f_s}{\partial t^2} \bigg|_{h=0} \sim |t|^{-\alpha} \]

\[M \sim -\frac{\partial f_s}{\partial h} \bigg|_{h=0} \sim (t \vert \Delta \vert^h) \]

\[\Rightarrow \beta = 2 - \alpha - \Delta \]

Use \(\Delta = \beta s = \beta + \gamma \) (derived earlier)

\[\Rightarrow 2\beta + \alpha + \gamma = 2 \]
Isothermal susceptibility

\[\chi_T \sim \frac{\partial m}{\partial h} \sim \frac{2}{\hbar} \left[\frac{1}{|t|^{2-\alpha-\Delta}} g' \left(\frac{\hbar}{|t|\Delta} \right) \right] \]

\[\sim \left(\frac{1}{|t|^{2-\alpha-2\Delta}} g'' \left(\frac{\hbar}{|t|\Delta} \right) \right) \]

\[h \to 0 \quad 2-\alpha-2\Delta \]

\[\sim |t| \]

\[\Rightarrow -\gamma = 2-\alpha-2\Delta \quad (1) \]

Combine with \(\beta = 2-\alpha-\Delta \quad (2) \)

\[\Rightarrow \alpha + 2\beta + \gamma = 2 \]

(Can also get \(\Delta = \beta + \gamma \).)
RG: First glance

A quick derivation of scaling
Kadanoff's ideas

Basic idea: Eliminate microscopic (short distance/short wavelength/large momentum) degrees of freedom.

- Ask close at T_c, the system is self-similar. (I.e. there is no characteristic length scale)

One RG iteration = 3 steps

Step I: Coarse grain.

Change resolution from a to $2a$.

Integrate short distance fluctuations.

E.g. Summing over every other spin changes the lattice constant from a to $2a$.
(In real space, one would have \(l = \text{integer} \). In Fourier space \(l \) could be arbitrary.)

Step II

Rescale: \(x' = \frac{x}{l} \)

\[\downarrow \text{Step I} \]

- I.e. measure lengths in units of the new lattice constant.
- Now the new lattice looks the same as the old one.

Step III

Spin rescaling / wave function renormalization

(to be considered later)
• As we iterate, we are successively looking at longer and longer distance physics.

• The relevant coupling constants grow. The irrelevant ones shrink.

• Assume we have done enough RG that all irrelevant coupling constants have already disappeared.

• Then the functional & form of \(H \) does not change, only its coefficients.

\[
H(t, h) \rightarrow H' = H(t', h')
\]

(assuming \(t, h \) are the only relevant parameters)

\[
Z = \text{Tr} \ e^{-H}
\]
• Fixed point \(t = t^*, h = h^* \) where
 \[H'(t^*, h^*) = H(t^*, h^*) \]

• The system exhibits self similarity / scale independence
 at the fixed point

• Fixed point is not the same as critical point.

Different magnets at the critical point have different \(H \). However under RG, they flow to the same fixed point.
 \[\Rightarrow \text{Universality!} \]

They all look identical at long distances.
• Behavior of ξ

\[\dot{\xi} = \frac{\xi}{\ell} \]

(\(\xi\) is of course the same in laboratory units.)

→ Away from critical point

\[\xi \to 0 \]

→ At fixed point \(\xi^* = \xi^* \Rightarrow \xi^* = \xi^* \)

\[\Rightarrow \xi = 0 \text{ or } \xi = \infty \]

trivial fixed point non-trivial fixed point

• Main idea:

Linearize the RG flow equations in the vicinity of the fixed point.
For Ising model

\[t^* = h^* = 0 \]

Flow equation:

\[t' = f(t, h) \]
\[h' = g(t, h) \]

Linearize:

\[t' = A t + B h \]
\[h' = C t + D h \]

Due to symmetry under \(h \rightarrow -h \), we have

\[t' = A t \]
\[h' = D h \]

(Otherwise diagonalize

\[\begin{pmatrix} t' \\ h' \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} t \\ h \end{pmatrix} \]

\[t' = A(l) t \]
\[h' = D(l) h \]

Clearly \(A(l_1) A(l_2) = A(l_1 l_2) \)

Solution \(A(\ell) = \ell \)

\((\text{Group}) \)

\(\star \) Actually a semigroup.

\(\star \) No inverse.
\[
\begin{align*}
 t' &= e^{y_t} t \\
 h' &= e^{y_h} h
\end{align*}
\]

These eqns tell us how \(t \) and \(h \) vary under coarse graining.

Since the new \(H \) has the same form as the old one, the free energy will have the same functional form.

- After one step
 \[
 \frac{N}{l} f_s(t', h') = N f_s(t, h)
 \]

- After \(n \) steps
 \[
 \frac{N}{l} f_s(t^{(n)}, h^{(n)}) = N f_s(t, h)
 \]

 \[
 -\frac{d}{dt} f_s(l, \frac{ny_t}{l}, \frac{ny_h}{l}) = N f_s(t, h)
 \]

 True for arbitrary \(n \).

Choose \(l \) such that \(l^T t^T = 1 \) or \(l = \frac{1}{t^T} \).

\[
\Rightarrow \quad f_s(t, h) = |t|^d f_s(t^y, \frac{h}{t^{y_h/y_t}})
\]
We have "derived" scaling from RGI:

\[f_s(t, h) = |t| f \left(1, \frac{h}{|t| y_t / y_h} \right) \]

\[2 - \alpha = \frac{d}{y_t}, \quad \Delta = \frac{y_h}{y_t}, \quad F(x) = f_s(1, x) \]

A detailed calculation will give \(y_h, y_t \), from which all exponents can be derived.
1D Ising model

First the exact soln

\[Z_N(h,k) = \text{Tr} \exp\left[k \sum_i S_i S_{i+1} + h \sum_i \sum_i \right] \]

\[= \prod_{i=1}^N \prod_{S_i S_{i+1} T_{S_1 S_2} T_{S_2 S_3} \cdots T_{S_N S_{N+1}} \cdots} \]

\[= \text{Tr} T^N = \text{Tr} \left(\begin{pmatrix} \lambda_+ & 0 \\ 0 & \lambda_- \end{pmatrix} \right)^N \]

\[= \lambda_+^N + \lambda_-^N = \lambda_+^N \left(1 + \left(\frac{\lambda_-}{\lambda_+} \right)^N \right) \]

\[\rightarrow \lambda_+ \]

\[T_{S_1 S_2} = \exp \left[\frac{h}{2} (S_1 + S_2) + k S_1 S_2 \right] \]

\[T = \begin{bmatrix} e^{h+k} & -e^k \\ -e^{-k} & e^{-h+k} \end{bmatrix} \]

\[\lambda_+ \text{ and } \lambda_- \text{ are its eigenvalues} \]

\[\lambda_{\pm} = e^{\frac{h}{2}} \left(\cosh h \pm \sqrt{\sinh^2 h + e^{4k}} \right) \]
\[Z_N(h,k) = \lambda_{+}^{N} = e^{-\frac{F}{T}} \]

\[f = \frac{F}{N} = -T \ln \lambda_{+} \]

\[= -KT - T \ln (\cosh h + \sqrt{\sinh^2 h + e^{-4k}}) \]

\[K = \frac{3}{T} \]

\[J'' = \text{cost. drop it.} \]

\[f = -T \ln (\cosh h + \sqrt{\sinh^2 h + e^{-4k}}) \]

\[\text{exact!} \]

- \(f \) is analytic for any finite \(T \).
 \(\Rightarrow \) No phase transition at \(T \neq 0 \).

- \(\bar{M} = \left\langle s \right\rangle = -\frac{\partial f}{\partial H} = -\frac{\partial f}{T \partial h} \]

\[= \frac{\sinh h}{\sqrt{\sinh^2 h + e^{-4k}}} \]

\[h \to 0 \quad \Rightarrow \quad 0. \quad \text{No spontaneous symmetry breaking} \]
magnetic susceptibility

\[\chi = \left. \frac{\partial m}{\partial H} \right|_{H \to 0} = \frac{\hbar}{e^2} \kappa = e^{\frac{2J}{T}} \frac{\hbar}{T} \]

\[= \frac{\partial}{\partial H} \left(e^{\frac{2J}{T}} \frac{H}{T} \right) \]

\[= \frac{1}{T} e^{\frac{2J}{T}} \]

\(\sim \frac{1}{T} \) for large \(T \) (Curie)

essential singularity at

\(\lim_{T \to 0} \) as \(T \to 0 \)

Heat capacity \((H=0) \)

\[C_V = -T \left. \frac{\partial^2 f}{\partial T^2} \right|_{H=0} = -2J/T \quad C_V \]

\[\sim -T^4 \frac{4J}{T^3} \frac{e^{-2J/T}}{1 + e^{-2J/T}} \]

\[\sim \frac{4J}{T^2} \exp \left(-\frac{2J}{T} \right) \]

has a peak near \(J \sim k_B T \)

(Schottky anomaly)

NO singularity as \(T \to 0 \)

(exponential dominates)
From

\[\langle S_0 S_n \rangle \xrightarrow{T \to 0} -2n e^{-5/T} \]

\[= e^{-\frac{n}{\xi}} \]

\[= e^{\xi} \]

\[\Rightarrow \xi = \frac{1}{2} \exp \left[\frac{5}{T} \right] \]

- diverges as \(T \to 0 \)
- not power law but essential singularity
RG treatment of 1D Ising model

\[H = -k \sum_j S_j S_{j+1} - h \sum_j S_j - C \geq 1 \]

\[= H(k, h, C) \]

has no physical significance

\[Z_N = \text{Tr} \ e^{-H} = \sum_{S_i=\pm 1} \exp[-H(S_i)] \]

"Divide and conquer."
Trace over every other spin.

Step I

\[Z_N = \sum_{S_i} \cdots T_{S_- S_o} T_{S_o S_+} \cdots \]

Define

\[T'_{S_- S_+} = \sum_{S_0=\pm 1} T_{S_- S_0} T_{S_0 S_+} \]

\[= \exp[k' S_- S_+ + \frac{1}{2} h' (S_- S_+ + S_0) + C'] \]

(Recall \[T_{S_- S_0} = \exp[k S_- S_0 + \frac{1}{2} h (S_- + S_0) + C] \])
\[
T'_{S_-S_+} = \left\{ \begin{array}{c}
\text{at } S_o = \pm 1 \\
T_{S_-S_o} T_{S_oS_+}
\end{array} \right.
\]

\[
= \exp \left(\left\{ K S_+ + \frac{1}{2} h S_+ + \frac{1}{2} h + c \right\} + \left\{ K S_+ + \frac{1}{2} h + \frac{1}{2} h S_+ + c \right\} \right)
+ \exp \left(-K S_- + \frac{1}{2} h S_- - \frac{1}{2} h + c - K S_- - \frac{1}{2} h + \frac{1}{2} h S_+ + c \right)
\]

\[
= \exp \left(\frac{1}{2} \left(S_+ + S_+ \right) + 2c \right) 2 \cosh \left[K (S_++S_+) + h \right]
\]

\[
= \exp \left[K' S_-S_+ + \frac{1}{2} h' (S_+ + S_+) + c' \right]
\]

We now solve for \(K', h', c' \) in terms of \(K, h, c \).

(i) \(S_- = S_+ = 1 \)

\[
e^{K' + h' + c'} = e^{h + 2c} \quad \Rightarrow \quad 2 \cosh \left(2K + h \right) \quad (1)
\]

\(x = \)

(ii) \(S_- = S_+ = -1 \)

\[
e^{K' - h' + c'} = e^{-h + 2c} \quad \Rightarrow \quad 2 \cosh \left(-2K + h \right) \quad (2)
\]

\(y = \)

(iii) \(S_- = -S_+ = 1 \)

\[
e^{-K' + c'} = e^{2c} \quad \Rightarrow \quad 2 \cosh \left(h \right) \quad (3)
\]

3 equations, 3 unknowns.
Define \(e^k' = A \), \(e^h' = B \), \(e^c' = D \)

\[
\begin{align*}
A & = x \\
B & = y \\
D & = z
\end{align*}
\]

\(1 \times \frac{2}{3} \times z^2 = ABD \)

\(\frac{AD}{B} \frac{D^2}{A^2} = D^4 = xy^2 \)

\[
\Rightarrow \quad e^{4c'} = e^8 \cdot 16 \cdot \cosh(2k+h) \cdot \cosh(-2k+h) \cdot \cosh^2 h
\]

\(A = \frac{D}{z} \)

\[
\Rightarrow \quad e^k' = \frac{e^c'}{e^{2c} \cdot 2 \cosh(h)}
\]

\[
\begin{align*}
4k' & = \frac{\cosh(2k+h) \cosh(-2k+h)}{\cosh^2 h} \\
B & = \frac{AD}{y}
\end{align*}
\]

\[
2h' = e^{2h} \frac{\cosh(2k+h)}{\cosh(2k-h)}
\]

-algebra

- exact recursion relations/flow eq'ns for 1D Ising model
Fixed points

Put \(H = 0 \).
Flow of \(C \) is not relevant.

\[
e^{4K'} = \cosh^2(2K) = \frac{e^{4K} + e^{-4K}}{2}
\]

(\(\star \))

For fixed point, \(k' = k \).

(i) \(k = \infty \quad (\infty T = 0) \)

Then \(4K' = \ln \frac{e^{4K}}{4} = 4K - \ln 4 \approx 4K \)

\(\Rightarrow k' \approx k \).

(ii) \(k = 0 \quad (T = \infty) \)

\[e^{4K'} = 1 \Rightarrow k' = 0. \]

\(\text{RG flow?} \)

For large \(K \), \(e^{4K'} \approx e^{4K} \)

\(\Rightarrow k' \approx K \)

For small \(K \), from (\(\star \))

\[1 + 4K' \approx 1 + 4K^2 \]

\(\Rightarrow k' \approx K^2 \Rightarrow k' < K \)

\[\begin{array}{ccccccccccccccc}
\infty & \rightarrow & \rightarrow & \rightarrow & 0 & \rightarrow & \rightarrow & \rightarrow & K \\
& \rightarrow & \rightarrow & \rightarrow & 0 & \rightarrow & \rightarrow & \rightarrow & 1
\end{array} \]
RG for 1D Ising model

0 \rightarrow \rightarrow \rightarrow \rightarrow T

(We are showing this as a continuous flow for clarity.)

- It is clear that $\xi = \infty$ at $T=0$ and $\xi = 0$ at $T=\infty$.

- $T=0$ is the critical/nontrivial fixed point.

- Notice $T=0$ is a fixed point. => There is a "phase transition" with $T_c = 0$.

- Phase diagram with both h and T? Home assignment.
Free energy?

For one step

\[\xi' = \frac{\xi}{2} = \frac{\xi}{x} \]

\[\ln Z_N(t, h) = \ln Z_{N'}(t', h') \]

\[\frac{1}{N} \ln Z_N(t, h) = \frac{1}{N'} \ln Z_{N'}(t', h') \]

\[f(t, h) = \frac{1}{x} f(t', h') \]

After \(n \) steps

\[f(t, h) = \frac{1}{L^n} f(t^{(n)}, h^{(n)}) \]

Put \(h = 0 \).

Convenient to work with \(x = e^{-\frac{4K}{T}} \)

\[e^k = \frac{\cosh 2K}{\sinh 2K} = \frac{e^k + e^{-k}}{2} \]

For \(T \to 0 \)

\[x' = 4 \frac{x}{k^2} = \frac{x}{k^2} \]

\[f(x) = \frac{1}{L^n} f \left(\frac{x L^{2n}}{k^{2n}} \right) \]

Define \(x L^{2n} = 1 \) \(\Rightarrow \) \(\frac{1}{k^2} = x^{-2n} \)

\[f(x) = x^{-2K} f(x^{1}) = e^{-2K} f(1) \]
\[f(T) = e^{-\frac{2J}{t}} f(1) \]

Compare with the exact result \(f(T) = -T \ e^{-\frac{2J}{t}} \).

At least we get the essential singularity correctly.

Imagine a model where

\[T' = R(T) \]
RG generates new couplings - the problem appears to become more complicated in the beginning!

\[
H = J_1 \sum_i (S_i \cdot S_{i+1} + \sigma_i \cdot \sigma_{i+1}) + J_2 \sum_i S_i \cdot \sigma_i \cdot \sigma_{i+1}
\]

integrate out half of spins (boxes)

\[
H = J_1' \sum_i (S_i \cdot S_{i+1} + \sigma_i \cdot \sigma_{i+1}) + J_2' \sum_i S_i \cdot \sigma_i \cdot \sigma_{i+1}
\]

- New couplings \((J_3', J_4')\) are generated. These "happened" to be zero initially.

- In general one must keep all couplings in \(H\) for useful RG.

- Not many RG problems solved exactly.

- After enough RG, many couplings shrink to zero, however.