Introduction

High heat transfer augmentations on a turbine blade due to the turbulence levels exiting the combustor continue to be a topic of concern for the gas turbine industry. With this concern comes the need to develop a fundamental understanding of how the highly turbulent flow convects through the turbine vane passage. The turbulence characteristics in the inviscid flow region of the turbine vane passage are typically needed as a boundary condition for boundary layer calculations. Also, when performing a full Navier–Stokes CFD simulation, one of the first benchmarks needed for the various turbulence models is a comparison of the turbulence predictions in the passage.

This paper presents mean and turbulent flowfield measurements in the inviscid region of the turbine airfoil for both a low (baseline) and a highly turbulent flowfield. Several studies presented in the past have measured two of the three velocity components with rms levels in a scarce number of locations in a turbine vane passage. In this study, all three fluctuating velocities were measured to quantify the turbulent kinetic energy variation in the turbine vane passage. Coincident streamwise and cross-pitch velocities were measured to quantify Reynolds shear stress. Energy spectra of the fluctuating velocities were computed to give length scales and estimates of the dissipation at the entrance to the turbine vane. These measurements provide an understanding of the variation of the turbulence throughout the passage as well as a complete set of inlet boundary conditions necessary for a numerical simulation.

Past Studies

There have been a few studies documenting turbulence levels exiting the combustor. Kuotmos and McGuirk [1] measured mean and fluctuating velocity profiles in a can-type combustion chamber and reported local axial turbulence levels up to 30 percent at the exit of the combustor. Moss [2] also measured turbulence levels exiting a variety of gas turbine combustors and reported turbulence levels of 9 percent with a typical length scale being between 5 to 7 mm. Ames [3] studied turbulence levels exiting a scaled-up, two-dimensional representation of an annular combustor and reported turbulence levels as high as 13 percent with a length scale to pitch ratio of \(\lambda_x/P = 0.13 \).

The characteristics of the turbulent field convecting through the passage have not been completely documented at this time. Bailey [4], Priddy and Bayley [5], Ames [6], Bangert et al. [7], and Radomsky and Thole [8] all reported measurements of some turbulence components inside the turbine vane passage. All of these studies reported that there is a decrease in the streamwise fluctuations in the inviscid region as the flow accelerates along the suction side of the vane. Along the pressure side of the vane, Priddy and Bayley [5] reported streamwise fluctuations that remained nominally constant. Ames [6] reported an increase in the cross-stream fluctuations (normal to the blade surface) as the flow progressed through the passage, while Radomsky and Thole [8] reported similar increases in both the cross-stream and spanwise fluctuations.

In general, there is still not enough information regarding the turbulent flowfield characteristics surrounding a turbine airfoil. To date, there have been some measurements of the streamwise fluctuations and a scarce number of measurements of the cross-pitch velocity fluctuations. Not enough measurements have been made to deduce the turbulent kinetic energy field or the shear stress surrounding a vane. There is a need to have well-documented turbulent flowfield measurements both to gain a better physical understanding and for CFD benchmarking purposes.

Experimental Facility and Instrumentation

A stator vane, scaled up by a factor of nine, was placed in a large-scale wind tunnel for this study. The stator vane geometry was a two-dimensional slice of an engine profile taken at the vane midspan. The construction and the development of the scaled-up stator turbine vane and the test section have been previously documented by Radomsky and Thole [8] and Kang et al. [9]. The wind tunnel used in this study is recirculating with a corner test section.
shown in Fig. 1. This test section contains a central turbine vane with two adjacent vanes. The outside adjacent vane was constructed by attaching a leading edge to a plexiglass sidewall, allowing for optical access. The placement of the sidewall exactly matches that surface of an adjacent vane. At the point where the adjacent vane geometry stops, the flexible wall was positioned such that the central vane matched a two-dimensional, inviscid pressure distribution computationally predicted for periodic vanes at low-speed conditions. The inlet Reynolds number, based upon approach velocity and chord length, was matched to that of engine conditions. Pressure measurements on the central vane were made to ensure that the sidewall and flow stagnation point were positioned correctly. The upstream sidewall boundary layers were removed by adjustable bleeds while tailboards on the outer vanes ensured that periodic flow occurred in both passages around the central airfoil. A description of the turbine vane itself is given in Table 1.

A fixed Cartesian coordinate system was maintained for these measurements based on a location measured from the flow stagnation point, as shown in Fig. 1. Flowfield measurements, which included all three velocity components and rms velocities, were performed with a two-component laser-Doppler velocimeter (LDV) with digital burst correlator processors. The LDV was positioned both on the top of the test section to measure the streamwise \((U)\) and cross-passage \((V)\) velocity components and on the side of the test section to measure spanwise \((W)\) velocities. A 350 mm focusing lens without a beam expander was used to make measurements of the streamwise and pitchwise components through the top endwall. The spanwise component was measured from the side using the 750 mm focusing lens with a beam expander. The probe volume length and diameter for the 350 mm lens were 1.3 mm and 90 \(\mu\)m whereas the probe volume length and diameter for the 750 mm lens with the beam expander were 0.85 mm and 46 \(\mu\)m. The flow was seeded with 1-\(\mu\)m-dia aluminum dioxide particles. The measured velocities were corrected for bias errors using the residence time weighting correction scheme.

Autocorrelation length scales were measured with a single sensor hot-wire having a length of 1.5 mm and diameter of 4 \(\mu\)m. The hot-wire sensor had a frequency response of 200 kHz at 36 m/s, but the analog output was filtered at 10 kHz. The integral length scales were calculated using eight samples with each sample having 80,000 points at a sample frequency of 20 kHz. These single sensor hot-wire measurements were taken at a position where the flow was only in one direction based on the assumption of a Gaussian distribution of the turbulence. As will be shown later, good agreement occurred for both the mean and rms levels between the hot-wire measurements and LDV measurements.

As previously described by Radomsky and Thole [8], the central vane as well as the outer leading edges were constructed by stacking rigid polystyrene pieces 5 cm thick that were cut into the shape of the vane using a template and a heated wire. On the outside of the central vane surface, five 50 \(\mu\)m thick type 304 stainless steel foils were attached to the polystyrene. The metal foils provided a constant heat flux boundary condition. Beneath the stainless steel foil and embedded in the styrofoam 58 type E thermocouples were placed. The spanwise position for the thermocouples was at 40 percent of the span measured from the bottom endwall.

The convective heat flux was calculated using the total power supplied to the metal foils minus radiation losses and conduction losses and gains. The radiation correction used a vane surface emissivity of \(\varepsilon = 0.22\) (value for typical clean stainless steel given by Incropera and DeWitt [10]) and the measured side wall temperatures, which agreed with the free-stream temperature. The radiation losses ranged between 3–8 percent of the input power for the baseline, low-turbulence cases. A two-dimensional finite element grid was constructed to account for the conduction losses and gains. The worst case was for the baseline case close to the trailing edge, resulting in a 2 percent correction.

The development of the turbulence generator used for the high free-stream turbulence experiments was described in detail by Bangert et al. [7]. This active grid consists of vertical hollow square bars with jets injecting into the mainstream in both the upstream and downstream directions. The bars are 1.27 cm square with the jet holes having a diameter of 1.5 mm and vertically spaced 3.65 cm apart. These hollow bars were installed 88 bar widths upstream of the stator vane stagnation position or, in terms of vane coordinates, at 1.9 chords in front of the stagnation position. A compressed air supply fed a plenum that supplied each of the bars.

Uncertainty Estimates

Each of the mean and rms velocities presented in this paper were averaged over 12,000 points, which took nominally 30 seconds to acquire using the LDV. When performing coincidence measurements for the Reynolds shear stress, a total of 25,000 points were taken at each location. The precision uncertainties for these measurements were estimated using a 95 percent confidence interval. The precision uncertainty for the mean velocities was 0.7 percent for the low turbulence measurements and 0.8 percent for the high turbulence level while the bias uncertainty for both was estimated to be 1 percent. The precision uncertainty for the rms of the velocity fluctuations was 2.0 percent for the high turbulence levels, while the uncertainties in the measured Reynolds stress and turbulent correlation coefficient were estimated to be 12 percent. For the hot-wire measurements, the precision uncertainty for the mean and rms velocities were 2.6 and 2.5 percent, respectively, while the uncertainty in the integral length scale was estimated to be 12.4 percent.

The total uncertainty in Stanton numbers, using the sequential perturbation method discussed by Moffat [11] was 4 percent at the leading edge and 5 percent at the trailing edge on the suction side.
Inlet Flow Conditions

To insure good flow conditions around the turbine vane, a number of velocity profiles were checked upstream and at the stagnation location. Mean velocity profiles were measured for low and high turbulent flowfields at the inlet using both an LDV and a hot-wire anemometer. In addition, flowfield measurements were compared between the inner and outer passages to insure good periodicity in the two passages surrounding the central vane. The flowfield measurements were compared with CFD predictions made using RAMPANT as described in FLUENT/UNS [12]. These two-dimensional, inviscid, CFD predictions were made using a single passage with periodic boundary conditions. The inlet velocities to the turbine vane for both the low and high turbulence cases were matched.

Figure 2(a) compares measured and predicted profiles across the entire pitch of the two passages in terms of the streamwise and cross-stream velocities normalized by the upstream incident velocity, U_∞. The measurement location was one-third of a chord upstream of the vane stagnation. Both the low and high turbulent free-stream turbulence cases are presented in Fig. 2(a). The velocity measurements for both the low and high turbulent cases agree very well with the predicted velocities except near the edge of the test section where there is a sidewall boundary layer. Note that this is upstream of the sidewall suction slot, which is intended to remove the sidewall boundary layer. These measurements are a good indication that the active grid jets have not affected the mean flowfield. Across the vertical span of the turbine vane, the mean velocity uniformity was such that the maximum deviation normalized by the average velocity was 1.6 and 3.5 percent for the low and high turbulence cases. In addition to the LDV data, Fig. 2(a) shows good agreement with the hot-wire measurements of the streamwise velocity component for the highly turbulent case. At this location, the vane is already detected by the flow, showing a deceleration in the streamwise velocity component at the center of the passage. As the streamlines turn around the vane, slightly positive cross-span (V/U_∞) velocities occur near the stagnation for $Y/P>0$ and slightly negative cross-span velocities occur near the stagnation for $Y/P<0$.

Figure 2(b) shows the normalized rms levels of the streamwise (u_{rms}/U_∞), cross-stream (v_{rms}/U_∞), and spanwise (w_{rms}/U_∞) velocity fluctuations as well as the normalized integral (A_{in}/P_∞) and dissipation (L_∞/P_∞) length scales for the highly turbulent case. At the inlet location, all three rms levels are close to the same value with only slightly lower spanwise fluctuations, w_{rms}/U_∞. The average spanwise fluctuations are 91 percent of the average streamwise fluctuations and 93 percent of the cross-stream fluctuations. For the high turbulence case, the maximum deviation of the rms velocities across the vertical span of the turbine vane was 2.8 percent. The average turbulence level at this location is 19.5 percent. The hot-wire measurements of the streamwise fluctuations in Fig. 2(b) show good agreement with the LDV measurements.

The integral length scale, also shown in Fig. 2(b), is nominally 12 percent of the vane pitch and is relatively uniform across the pitch. The dissipation, used in the dissipation length scale, was determined from a curve fit to the following formula in the inertial subrange of the energy spectra for the streamwise fluctuations [6,13]:

$$E_1(k_1) = 1.62 \times 10^{-18} k_1^{-5/3}$$

(1)

The dissipation length scale is nominally two times larger than the integral length scale. Figure 2b shows that the level and scale of the turbulence are representative of combustor generated turbulence as measured by Ames [3].

Figure 3(a) shows LDV mean velocity measurements across the passages at the vane geometric stagnation for both the low and high turbulence cases as compared with a CFD prediction for the low turbulence case. Note that both the inside and outside passages around the central turbine vane are shown. There is good agreement between the measured and predicted mean velocity components as well as an indication that the flow periodicity between the two passages is quite good. The rms velocities for the highly turbulent flowfield also showed good periodicity for the two passages, as will be shown later.

Streamwise velocity measurements leading up to the flow stagnation and midspan passage locations of the vane are compared with that predicted in Fig. 3(b). Note that good agreement between the predicted and measured velocities using both the LDV and hot-wire occur. Figure 4 shows how the streamwise rms levels of the velocity fluctuations as well as the turbulent kinetic energy, normalized by the upstream velocity, vary proceeding up to the stagnation edge. For both of the velocity fluctuations, the increase starts to occur at $X/C=-0.05$, moving toward the vane. Very close to the vane, the streamwise fluctuations, u_{rms}/U_∞, again decrease. Note that the hot-wire measurements of the streamwise fluctuations are only presented up to $X/C=-0.1$. Beyond that location the streamlines turn significantly and the velocities are quite low with high turbulence levels making the hot-wire measurements invalid. The turbulent kinetic energy, also shown in Fig. 4, increases to a level that is 1.3 times higher than at the inlet. The rapid increase starts to occur at approximately one integral length scale upstream of the vane stagnation ($X/C\sim-0.1$).

The energy spectra of the streamwise fluctuations at the inlet are shown in Fig. 5 as compared with the von Karman spectra and the unified relation given by Mayle et al. [14]. Also shown in Fig.
are the spectra taken at the closest position to the stagnation location. The turbulent Reynolds numbers, \(\text{Re}_t \), for these two locations are quite similar. The Taylor microscale was estimated from the following relation:

\[
\lambda = \left[\frac{15 \mu_u^2}{\varepsilon} \right]^{1/2}
\]

In the low wave number region there is good agreement between the measured energy spectra and those given by the von Karman and Mayle et al. [14] relations. As the wave number increases, the drop-off of the inertial subrange is well predicted by the relation given by Mayle et al. [14] for the inlet condition \(X/C = 0.35 \). Although the turbulent Reynolds numbers are very similar, closer to the stagnation location \(X/C = 0.09 \) the drop-off in the inertial subrange is not predicted by the relation given by Mayle et al. [14] but is much more rapid.

Mean Velocity Flow Field Results

Figures 6(a) and 6(b) show vectors and normalized total velocity contours for the low free-stream turbulence case measured throughout the passage. Note that all of these flowfield measurements were made in a plane at the midspan between the mid-pitches of the central vane passages. For presentation purposes in this paper, the data were simply numerically shifted to give one full pitch from stagnation to stagnation. Because the data were shifted, the smoothness of the contours are an indication of the good flow periodicity in both passages of the central vane.

As expected with this vane geometry, there is a high acceleration that occurs around the suction side of the vane. The flow stagnation can be clearly seen from both the contours and the velocity vectors. The contour levels indicate that the flow has been accelerated to five times the incident velocity.

Figure 7 gives the normalized total velocity contours for the highly turbulent flow. The largest difference between Figs. 6(b) and 7 is along the suction surface where a larger region of high-speed fluid occurs for the highly turbulent flowfield. This larger high-speed region is a result of an acceleration of the inviscid flow due to the transition of a turbulent boundary layer occurring further upstream along the vane. Earlier transition caused a thicker turbulent boundary layer along the suction side of the vane for the highly turbulent case. The difference between the cases can also be seen in Fig. 8 where the local freestream velocity distribution is given for the measured conditions and the inviscid CFD prediction. The effect of the larger boundary layer thickness can be seen at values greater than \(s/C = 0.5 \).

Turbulent Flow Field Results

Contours of the rms levels of the fluctuations for each of the velocity components were measured for the inviscid region. Figures 9(a–c) show contour levels of the normalized rms levels for the 19.5 percent inlet turbulence case. Contour levels are given in increments of 0.04.

For the streamwise fluctuations, shown in Fig. 9(a) the inlet levels are nominally \(u_{rms}/U = 0.2 \). Between the inlet and stagnation region the rms levels are between \(u_{rms}/U = 0.16 \) and 0.20. Near the leading edge, an increase in the streamwise fluctuations occurs with the peak occurring just upstream of the geometric stagnation location toward the suction surface of the vane relative to the flow stagnation location. The peak level rises to a value of \(u_{rms}/U = 0.24 \). Very near the geometric stagnation point, the streamwise fluctuations decrease as a result of being attenuated by the presence of the vane. As the flow progresses along the pressure surface, the \(u_{rms}/U = 0.20 \) contour level moves away from
the pressure surface giving a lower value of \(\frac{u_{\text{rms}}}{U'} = 0.16 \). At the midpitch of the passage, the lowest streamwise rms levels occur at \(\frac{u_{\text{rms}}}{U'} = 0.16 \). This region is where the flow begins to turn and has the highest acceleration in the streamwise velocity component, resulting in a negative production of the streamwise velocity fluctuations.

Progressing through the passage, the streamwise fluctuations again start to increase up to a peak of \(\frac{u_{\text{rms}}}{U'} = 0.28 \). Beyond that peak location, the rms levels stay relatively constant. Note that near the suction surface, the streamwise rms levels are lower than at the midportion of the passage. Keeping in mind that an orthogonal coordinate system was maintained for these measurements, these velocity fluctuations are almost normal to the vane surface. The lower values near the surface can be explained by the fact that the vane surface is attenuating the fluctuations.

The cross-stream rms contours are shown in Fig. 9. Again, there is good uniformity at the entrance to the test section with a level of \(\frac{v_{\text{rms}}}{U'} = 0.20 \). A high contour of \(\frac{v_{\text{rms}}}{U'} = 0.24 \) occurs near the shoulder of the stator vane in the high acceleration region. This is also the location of the low contours of \(\frac{u_{\text{rms}}}{U'} \). Also, a low contour of \(\frac{v_{\text{rms}}}{U'} = 0.16 \) occurs in the middle of the passage, which starts at the location where the high contour of \(\frac{u_{\text{rms}}}{U'} \) occurred. Near the suction side of the vane surface, very high \(\frac{v_{\text{rms}}}{U'} \) values occur. Unlike the \(\frac{u_{\text{rms}}}{U'} \) fluctuations, which were being attenuated at the vane surface, the cross-stream fluctuations are quite high at the suction surface. These high values occur near the end of the turbine vane suction surface since this direction is more parallel with the turbine vane surface.

The spanwise rms contours, shown in Fig. 9(c), indicate variations only occurring in the near-wall regions. At the passage inlet the levels are \(\frac{w_{\text{rms}}}{U'} = 0.20 \) with values becoming slightly higher at \(\frac{w_{\text{rms}}}{U'} = 0.24 \) once inside the passage.

The turbulent kinetic energy level contours, which combine all three fluctuations, are shown in Fig. 10. Note that the increment between levels is 0.02. These contours are presented in terms of \(\sqrt{\vec{k}/U_{\infty}} \) and can be converted to a turbulence intensity through multiplying by a constant factor, i.e. \(\sqrt{2B_3}\sqrt{\vec{k}/U_{\infty}} \). The turbulent kinetic energy is quite uniform at the inlet with values between \(\sqrt{\vec{k}/U_{\infty}} = 0.22 \) and 0.24. As the flow progresses toward the geometric stagnation on the suction side of the vane, the turbulent kinetic energy levels increase significantly, reaching as high as \(\sqrt{\vec{k}/U_{\infty}} = 0.32 \). At the midpitch region just upstream of the passage, lower turbulent kinetic energy levels occur with values as low as \(\sqrt{\vec{k}/U_{\infty}} = 0.22 \). Once inside the vane passage, the turbulent kinetic energy increases to a level of \(\sqrt{\vec{k}/U_{\infty}} = 0.28 \), and remains essentially constant throughout the middle of the passage. This result shows that there is not a decay in the turbulent kinetic energy through a turbine vane passage. Near the turbine vane walls high values of the turbulent kinetic energy were measured.
It is clear that there is a very high region along the suction side of the vane beyond $s/C = 0.4$ that is approximately where transition to a turbulent boundary layer occurs.

Coincident LDV data were taken for the U and V velocity components to quantify Reynolds shear stress and correlation coefficients. Contours of the Reynolds shear stress normalized by the square of the inlet mean velocity $(\overline{u'v'}/U_\infty^2)$ are shown in Fig. 11(a) while the correlation coefficients (R_{uv}) are shown in Fig. 11(b). Unlike the other turbulent stress components $(\overline{u'^2}, \overline{v'^2}$, and $\overline{w'^2})$, the shear stress contours indicate a much different behavior. Positive shear stresses occur along the shoulder of the suction surface starting at the flow stagnation location. A negative shear stress occurs beyond this location. In the center of the passage, the magnitude in shear stress increases up to $\overline{u'v'}/U_\infty^2 = 0.025$, after which a decrease occurs.

For the turbulent shear stress, $\overline{u'v'}$, it is helpful to consider the production mechanism under high free-stream turbulence conditions. As pointed out by Gibson and Rodi [15] and Bradshaw [16] the production term for $\overline{u'v'}$ along a streamline can be written as,

$$P(\overline{u'v'}) = (2\overline{u'^2} - \overline{v'^2}) \frac{u}{R} \frac{\partial u}{\partial y} \left(1 + \frac{y}{R} \frac{\partial u}{\partial y} \right)$$ \hspace{1cm} (3)

In considering the inviscid region for the high turbulent case, the dominant term in this production equation is the first term whereby streamline curvature effects are included. For Eq. (3), R is the radius of curvature of the streamlines, positive for convex curvature and negative for concave curvature; and u, v, and w are the local mean velocity components along the streamline. In the case where the free-stream turbulence level is low but yet the flow has streamline curvature, the production of $\overline{u'v'}$ shear stress is quite small. In the case where there is no streamline curvature but yet the flow has high free-stream turbulence levels, the production of $\overline{u'v'}$ shear stress is also quite small. This latter case is indicated in the region upstream of the turbine vane and in the center of the vane passage where $\overline{u'v'} = 0$ as shown in Fig. 11(a). As the flow approaches the turbine vane for the convex curved streamlines ($R > 0$) along the suction surface shoulder, a positive production occurs as $2\overline{u'^2} > \overline{v'^2}$. Much further into the passage where concave curved streamlines occur ($R < 0$) and $2\overline{u'^2} > \overline{v'^2}$, the production of $\overline{u'v'}$ decreases and the $\overline{u'v'}$ values approach zero.
An understanding of the turbulent kinetic energy contours is better achieved by considering the production terms for a curved streamline along with the shear stress contours. Gibson and Rodi [5] and Bradshaw [16] give the production term for the turbulent kinetic energy along a curved streamline as:

\[P(k) = -u'v' \left[\frac{1}{R} \left(\frac{\partial u}{\partial y} \right) + \frac{1}{R} \left(\frac{\partial v}{\partial s} \right) - \frac{u'^2}{\nu} \left(\frac{\partial u}{\partial s} \right) \right] \]

Both Gibson and Rodi and Bradshaw point out that the dominating production term is the one that is underlined. For a turbulent boundary layer on flat plate, the production reduces to \(u'v' / \Delta y \), but where curvature exists there are additional terms such as \(u'v' / (u/R) \). For the convex curve case (suction side of the vane) where \(R>0 \) and \(u'v'>0 \), this results in a positive production for the turbulent kinetic energy. For the concave curved streamlines where \(R<0 \) and \(u'v'<0 \), this also results in a positive production.

Referring to Fig. 10, the lowest turbulent kinetic energy levels occur at a location of the midpitch entrance to the turbine vane passage. This location corresponds to the low shear stress values and very little streamline curvature. The high levels of turbulent kinetic energy near the geometric stagnation point (along the suction surface shoulder), can be attributed to the high turning of the streamlines. Progressing through the passage, as the shear stress increases there is an increase in the turbulent kinetic energy due to the increased production.

Figure 11(b) shows correlation coefficient contours. At the inlet to the turbine vane, the turbulence structures are uncorrelated, giving a correlation coefficient of \(R_{vv} = 0 \). Except for the suction shoulder of the turbine vane, the correlation coefficients were primarily negative with a peak reaching as high as \(|R_{vv}| = 0.60 \). A negative correlation coefficient implies one of two conditions. The first condition is when a particle with a high \(U \)-velocity moves in the negative \(Y \) direction (negative \(V \)) giving a negative \(R_{vv} \), since the instantaneous \(U \) will be lower than \(\bar{U} \). The second condition is when a low \(U \)-velocity fluid moves in the positive \(Y \) direction (positive \(V \)), which is toward the suction surface. Because of the cross-pitch pressure gradient driving the flow from the pressure side toward the suction surface, the streamlines move toward the suction surface. Based on this argument, one would expect negative correlation coefficients to occur inside the turbine vane passage. The correlation coefficient rapidly decreases at the end of the passage. In the leading edge region, the positive correlation coefficients occur because the low streamwise speed fluid is turning in the negative \(Y \) direction.

Flow Field Relative to Vane Heat Transfer

It has been well-documented that high free-stream turbulence can greatly augment the surface heat transfer. Figure 12 shows the measured heat transfer along the vane surface for low and high free-stream turbulence conditions. For the low free-stream turbulence conditions, the peak heat transfer occurs at \(s/C = 0.25 \), which is where the highest acceleration occurs along the shoulder of the suction side of the turbine vane. For the high free-stream turbulence conditions, the Stanton numbers are relatively constant at elevated values, starting at the stagnation location and extending to \(s/C = 0.2 \) followed by a slight bump at \(s/C = 0.25 \). The transition location has moved significantly upstream on the vane surface for the high free-stream turbulence conditions relative to the baseline low free-stream turbulence. On the pressure side of the vane \((s/C < 0) \), the Stanton numbers indicate a slight rise near the trailing edge of the vane surface, indicating that transition may be starting.

Also shown in Fig. 12 are the turbulent kinetic energy values along the turbine vane surface just outside of the boundary layer for the \(Tu = 19.5 \) percent case. The highest turbulent kinetic energy levels occur at the stagnation location extending along the
suction side of the vane. The turbulence levels start to decrease at \(s/C = 0.4 \) and continue to decrease along the suction surface. After an initial decrease along the pressure surface, there is again an increase in the turbulent kinetic energy levels beyond \(s/C = -0.5 \). The highest augmentations in heat transfer occur along the pressure side of the vane where the increase in turbulent kinetic energy occurs.

Conclusions

This paper clearly showed that throughout the turbine vane passage, turbulence does not decay but rather it remains quite high throughout the passage. In order to conclude this, it was necessary to do a detailed flowfield mapping of all three velocities to quantify mean and rms levels. The turbulent kinetic energy contours showed increased values at the stagnation location and in the boundary layer after transition. The contours of streamwise and cross-pitch fluctuations showed variations throughout the passage, which, along with the curvature of the streamlines, could be used to explain the production of the shear stress. The contours of spanwise fluctuations showed relatively constant values except near the turbine vane surface. The production mechanisms for the turbulent kinetic energy were also discussed whereby the streamline curvature played a significant role.

The turbulent correlation coefficients in the turbine vane passage indicate that highly correlated turbulent structures exist. The sign of these coefficients are as expected with fluid moving from the pressure side of the vane to the suction side. The turbulent kinetic energy levels in the inviscid region just outside of the boundary layer show values that are very high with the peak levels occurring at the stagnation region and along the shoulder of the suction surface. Other than moving the transition location further upstream along the suction surface, the high free-stream turbulence also greatly augmented the surface heat transfer along the pressure side of the vane.

Acknowledgments

The authors would like to thank the Department of Energy’s Advanced Gas Turbine Systems Research Program for supporting this work. In particular, the authors would like to thank Dr. Dan Fant for serving as the contract monitor. The authors would also like to thank Pratt & Whitney, Florida, for supplying the turbine vane geometry.

Nomenclature

- \(b \) = turbulence generator bar width
- \(C \) = true chord length
- \(e \) = emissivity
- \(E_i(k_i) \) = spectra for streamwise fluctuations
- \(f \) = frequency
- \(h \) = convective heat transfer coefficient = \(q_{conv}/(T_s - T_{in}) \)
- \(k \) = turbulent kinetic energy = \(0.5(u_{rms}^2 + v_{rms}^2 + w_{rms}^2) \)
- \(k_l \) = wavenumber = \(2\pi/fu \)
- \(L_d \) = dissipation length scale = \(1.5u_{rms}^3/e \)
- \(P \) = turbine vane pitch
- \(q_{conv} \) = convective heat flux = \(q_{input} - q_{rad} - q_{cond} \)
- \(q_{cond} \) = conductive heat flux from finite element analysis
- \(q_{rad} \) = total heat flux from foils
- \(q_{rad} = \text{radiative heat flux} = e\sigma(T_s^4 - T_{in}^4) \)
- \(R \) = radius of curvature
- \(R^* \) = turbulent correlation coefficient = \(u'v'/(u_{rms}v_{rms}) \)
- \(Re_u \) = Reynolds number based on chord length and inlet velocity
- \(Re_p \) = Reynolds number based on Taylor microscale and \(u_{rms} \)
- \(s \) = distance measured along vane surface from stagnation
- \(S \) = full span
- \(St \) = Stanton number = \(h/pC_pU_{in} \)
- \(T_s \) = surface temperature
- \(T_{in} \) = free-stream temperature
- \(Tu \) = turbulence level
- \(U_{in} \) = upstream incident velocity
- \(u'v' \) = Reynolds shear stress
- \(u, v, w \) = local mean velocities along a streamline
- \(U, U_{rms} \) = local mean and rms velocities in the X direction
- \(V, V_{rms} \) = local mean and rms velocities in the Y direction
- \(W, W_{rms} \) = local mean and rms velocities in the Z direction
- \(X, Y, Z \) = fixed Cartesian coordinate system measured from the flow stagnation, see Fig. 1
- \(\varepsilon \) = turbulent dissipation obtained from Eq. (1)
- \(\Lambda \) = Taylor microscale
- \(\nu \) = kinematic viscosity
- \(\sigma \) = Stefan–Boltzmann constant

References